Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/19009
DC 欄位值語言
dc.contributor.authorZan, Annaen_US
dc.contributor.authorXie, Zhong-Ruen_US
dc.contributor.authorHsu, Yi-Chenen_US
dc.contributor.authorChen, Yu-Haoen_US
dc.contributor.authorLin, Tsung-Hsienen_US
dc.contributor.authorChang, Yong-Shanen_US
dc.contributor.authorChang, Kuan Y.en_US
dc.date.accessioned2021-12-09T06:21:46Z-
dc.date.available2021-12-09T06:21:46Z-
dc.date.issued2022-01-
dc.identifier.issn0169-2607-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/19009-
dc.description.abstractBackground and Objective: Not everyone gets sick after an exposure to influenza A viruses (IAV). Al-though KLRD1 has been identified as a potential biomarker for influenza susceptibility, it remains un-clear whether forecasting symptomatic flu infection based on pre-exposure host gene expression might be possible. Method: To examine this hypothesis, we developed DeepFlu using the state-of-the-art deep learning ap-proach on the human gene expression data infected with IAV subtype H1N1 or H3N2 viruses to forecast who would catch the flu prior to an exposure to IAV. Results: The results indicated that such forecast is possible and, in other words, gene expression could reflect the strength of host immunity. In the leave-one-person-out cross-validation, DeepFlu based on deep neural network outperformed the models using convolutional neural network, random forest, or support vector machine, achieving 70.0% accuracy, 0.787 AUROC, and 0.758 AUPR for H1N1 and 73.8% accuracy, 0.847 AUROC, and 0.901 AUPR for H3N2. In the external validation, DeepFlu also reached 71.4% accuracy, 0.700 AUROC, and 0.723 AUPR for H1N1 and 73.5% accuracy, 0.732 AUROC, and 0.749 AUPR for H3N2, surpassing the KLRD1 biomarker. In addition, DeepFlu which was trained only by pre-exposure data worked the best than by other time spans and mixed training data of H1N1 and H3N2 did not necessarily enhance prediction. DeepFlu is available at https://github.com/ntou-compbio/DeepFlu . Conclusions: DeepFlu is a prognostic tool that can moderately recognize individuals susceptible to the flu and may help prevent the spread of IAV.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIER IRELAND LTDen_US
dc.relation.ispartofCOMPUT METH PROG BIOen_US
dc.subjectSEASONAL INFLUENZAen_US
dc.subjectIMMUNITYen_US
dc.subjectDeep Learningen_US
dc.subjectInfluenza Preventionen_US
dc.subjectInfluenza Susceptibilityen_US
dc.titleDeepFlu: a deep learning approach for forecasting symptomatic influenza A infection based on pre-exposure gene expressionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.cmpb.2021.106495-
dc.identifier.isiWOS:000720347300002-
dc.relation.journalvolume213en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-2262-5218-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:03 GOOD HEALTH AND WELL-BEING
資訊工程學系
14 LIFE BELOW WATER
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

1
上周
0
上個月
checked on 2023/5/7

Page view(s)

194
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋