Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋工程科技中心
  3. 海洋工程科技中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/19127
DC FieldValueLanguage
dc.contributor.authorPin-Chun Huangen_US
dc.contributor.authorLee, Kwan Tunen_US
dc.date.accessioned2021-12-10T00:28:18Z-
dc.date.available2021-12-10T00:28:18Z-
dc.date.issued2021-12-01-
dc.identifier.issn0022-1694-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/19127-
dc.description.abstractThe channel impulse response function derived from the linearized Saint Venant equations has been widely applied to predict the streamflow discharge. Huang and Lee (2020) indicated that the distribution type of the impulse response function proposed by Dooge et al. (1987a) was restricted because of the constant reference parameters, therefore, they introduced the time-varying reference parameters according to the upstream inflow condition to reinforce the flexibility of adjusting the impulse response function. However, this model, called channel hydrological response function (CHARFU), was merely applicable to a channel under the assumption of a downstream open boundary. This study intended to apply the other impulse response function which was derived from the downstream disturbance and combine this function with the one derived from the upstream input to extend the model applicability in various channel states. To consider the temporal change of the downstream boundary condition, the time-varying reference parameters were also introduced in the function according to the tidal level at the estuary. A routing procedure that explained the integration of the two impulse responses for both upstream and downstream inputs was proposed as well for the runoff simulation of the entire river basin. A series of tests showed that the proposed model could even yield similar hydrographs with the comparative cases that applied the numerical model based on the Saint Venant equations owing to the revision of reference parameters. A practical case of a river basin was also provided to demonstrate the effectiveness of the proposed model to reflect the influence of the downstream tidal level on the simulated hydrograph. Although the proposed linear channel routing method still can not be applied to simulate a channel reach with flow transitions such as a sharp change of water surface elevation due to the assumption of gradually varied flow in the linearized governing equations, it can be more stable than a finite difference model and avoids the latter's occasional numerical oscillations, especially when applied to a shallow channel with an irregular bed.en_US
dc.publisherELSEVIERen_US
dc.relation.ispartofJOURNAL OF HYDROLOGYen_US
dc.subjectImpulse response functionen_US
dc.subjectLinear channel routingen_US
dc.subjectSaint Venant equationsen_US
dc.subjectDownstream boundary conditionen_US
dc.titleChannel-flow response function considering the downstream tidal effect and hydraulic characteristicsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.jhydrol.2021.126827-
dc.identifier.isiWOS:000706313000017-
dc.relation.journalvolume603en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptEcology and Environment Construction-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptRiver and Coastal Disaster Prevention-
crisitem.author.deptEcology and Environment Construction-
crisitem.author.orcid0000-0003-1675-8169-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
海洋工程科技中心
Show simple item record

Page view(s)

266
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback