Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/19925
DC FieldValueLanguage
dc.contributor.authorL.W. Tsayen_US
dc.contributor.authorY.C. Liuen_US
dc.contributor.authorD.-Y. Linen_US
dc.contributor.authorM.C. Youngen_US
dc.date.accessioned2022-01-18T01:48:41Z-
dc.date.available2022-01-18T01:48:41Z-
dc.date.issued2004-10-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/19925-
dc.description.abstractFatigue crack growth behavior of an AISI 316 austenitic stainless steel (SS) annealed using a CO2 laser was evaluated under various environments—lab air, gaseous hydrogen and saturated hydrogen sulfide solution. The laser-annealed specimen revealed no change in microstructures in various regions of the specimen. The results of fatigue crack growth tests indicated the laser-annealed specimen had a higher resistance to fatigue crack growth in the region preceding the laser-annealed zone (LAZ) independent of the test environments. Meanwhile, crack growth results also suggested that AISI 316 SS showed a low level of sensitivity to hydrogen-accelerated crack growth. X-ray diffraction pattern of the fatigue-cracked surface revealed that partial austenite to martensite transformation occurred within a narrow depth. The presence of residual austenite in the highly strained region trapped a large amount of hydrogen, which helped reduce hydrogen embrittlement susceptibility and hydrogen-accelerated crack growth in the alloy. Fatigue fractography of the specimens tested in air showed predominantly transgranular fatigue fracture with some flat facets (FFs). In case of specimens tested in the H2S solution or gaseous hydrogen at low loading frequency, quasi-cleavage (QC) fracture was correlated with hydrogen-enhanced crack growth. Moreover, the presence of obvious striations on the fracture surface of embrittled specimens could be attributed to the hydrogen-activated slip processes ahead of the crack front.en_US
dc.language.isoenen_US
dc.subjectFatigue crack growthen_US
dc.subjectResidual stressesen_US
dc.subjectAISI 316 stainless steelen_US
dc.subjectHydrogen embrittlementen_US
dc.subjectLaser surface annealingen_US
dc.titleThe use of laser surface-annealed treatment to retard fatigue crack growth of austenitic stainless steelen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.msea.2004.06.010-
dc.relation.journalvolume384en_US
dc.relation.journalissue1-2en_US
dc.relation.pages177-183en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Optoelectronics and Materials Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.orcid0000-0003-1644-9745-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:光電與材料科技學系
Show simple item record

Page view(s)

73
Last Week
0
Last month
2
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback