Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/19929
Title: Effect of hydrogen environment on the notched tensile properties of T-250 maraging steel annealed by laser treatment
Authors: L. W Tsay 
W. C Lee
W. C Luu
J. K Wu
Issue Date: Jun-2002
Journal Volume: 44
Journal Issue: 6
Start page/Pages: 1311-1327
Abstract: 
In the present work, slow displacement rate tensile tests were performed to find out the influence of ageing condition and hydrogen-charging on the notched tensile strength and fracture characteristics of T-250 maraging steel aged at various conditions. The influence of embrittling species in the environment on the notched tensile strength was accessed by comparing the measured properties in air, gaseous hydrogen and H2S-saturated solution. The hydrogen diffusivity, permeation flux and apparent solubility of various specimens determined by electrochemical permeation method, were correlated well with the microstructures and mechanical property. The results indicated that the peak-aged (H900) specimen was highly sensitive to hydrogen embrittlement even in gaseous hydrogen. In contrast, the microstructures of over-aged (H1100) specimen comprising of reverted austenite and incoherent precipitates could trap large amount of hydrogen atoms, resulting in decreased hydrogen permeability and hydrogen embrittlement susceptibility. The solution-annealed specimen had the highest diffusion coefficient and the lowest quantity of trapped hydrogen among the specimens, showing high susceptibility to sulfide stress corrosion cracking. In the presence of notches, hydrogen atoms were prone to segregate and trap at grain boundaries, resulting in the formation of intergranular fracture.
URI: http://scholars.ntou.edu.tw/handle/123456789/19929
DOI: 10.1016/S0010-938X(01)00137-8
Appears in Collections:光電與材料科技學系

Show full item record

Page view(s)

114
Last Week
0
Last month
2
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback