Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20164
DC FieldValueLanguage
dc.contributor.authorHong, Guo-Jhangen_US
dc.contributor.authorLi, Dong-Linen_US
dc.contributor.authorPare, Shreyaen_US
dc.contributor.authorSaxena, Amiten_US
dc.contributor.authorPrasad, Mukeshen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2022-02-10T02:50:41Z-
dc.date.available2022-02-10T02:50:41Z-
dc.date.issued2021-12-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20164-
dc.description.abstractA new online multi-class learning algorithm is proposed with three main characteristics. First, in order to make the feature pool fitter for the pattern pool, the adaptive feature pool is proposed to dynamically combine the three general features, Haar-like, Histogram of Oriented Gradient (HOG), and Local Binary Patterns (LBP). Second, the external model is integrated into the proposed model without re-training to enhance the efficacy of the model. Third, a new multi-class learning and updating mechanism are proposed that help to find unsuitable decisions and adjust them automatically. The performance of the proposed model is validated with multi-class detection and online learning system. The proposed model achieves a better score than other non-deep learning algorithms used in public pedestrian and multi-class databases. The multi-class databases contain data for pedestrians, faces, vehicles, motorcycles, bicycles, and aircraft.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofAPPLIED SCIENCES-BASELen_US
dc.subjectmulti-class object detectionen_US
dc.subjecton-line learningen_US
dc.subjectfeature selectionen_US
dc.subjectadaptive feature poolen_US
dc.titleAdaptive Decision Support System for On-Line Multi-Class Learning and Object Detectionen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/app112311268-
dc.identifier.isiWOS:000742919900001-
dc.relation.journalvolume11en_US
dc.relation.journalissue23en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0003-2618-7718-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

142
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback