Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20182
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChen, Yung-Weien_US
dc.date.accessioned2022-02-10T02:50:44Z-
dc.date.available2022-02-10T02:50:44Z-
dc.date.issued2021-12-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20182-
dc.description.abstractIn order to improve the Lindstedt-Poincare method to raise the accuracy and the performance for the application to strongly nonlinear oscillators, a new analytic method by engaging in advance a linearization technique in the nonlinear differential equation is developed, which is realized in terms of a weight factor to decompose the nonlinear term into two sides. We expand the constant preceding the displacement in powers of the introduced parameter so that the coefficients can be determined to avoid the appearance of secular solutions. The present linearized Lindstedt-Poincare method is easily implemented to provide accurate higher order analytic solutions of nonlinear oscillators, such as Duffing and van Der Pol nonlinear oscillators. The accuracy of analytic solutions is evaluated by comparing to the numerical results obtained from the fourth-order Runge-Kotta method. The major novelty is that we can simplify the Lindstedt-Poincare method to solve strongly a nonlinear oscillator with a large vibration amplitude.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectnonlinear oscillatorsen_US
dc.subjectanalytic solutionen_US
dc.subjectLindstedt-Poincare methoden_US
dc.subjectLinearized Lindstedt-Poincare methoden_US
dc.titleA Simplified Lindstedt-Poincare Method for Saving Computational Cost to Determine Higher Order Nonlinear Free Vibrationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math9233070-
dc.identifier.isiWOS:000734493500001-
dc.relation.journalvolume9en_US
dc.relation.journalissue23en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
Appears in Collections:海洋中心
輪機工程學系
Show simple item record

WEB OF SCIENCETM
Citations

7
Last Week
1
Last month
1
checked on Jun 27, 2023

Page view(s)

200
Last Week
0
Last month
3
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback