Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20200
DC FieldValueLanguage
dc.contributor.authorJwo, Dah-Jingen_US
dc.contributor.authorLee, Kun-Chanen_US
dc.date.accessioned2022-02-10T02:50:47Z-
dc.date.available2022-02-10T02:50:47Z-
dc.date.issued2022-01-01-
dc.identifier.issn1546-2218-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20200-
dc.description.abstractThe decentralized pre-filter based vector tracking loop (VTL) configuration with data wipe-off (DWO) method of the Global Positioning System (GPS) receiver is proposed for performance enhancement. It is a challenging task to continuously track the satellites' signals in weak signal environment for the GPS receiver. VTL is a very attractive technique as it can provide tracking capability in signal-challenged environments. In the VTL, each channel will not form a loop independently. On the contrary, the signals in the channels of VTL are shared with each other; the navigation processor in turn predicts the code phases. Thus, the receiver can successfully track signals even the signal strength from individual satellite is weak. The tracking loop based on the pre-filter provides more flexible adjustment to specific environments to reduce noise interference. Therefore, even if the signals from some satellites are very weak the receiver can track them from the navigation results based on the other satellites. The navigation data, which contains information necessary to perform navigation computations, are binary phase-shift keying (BPSK) modulated onto the GPS carrier phase with the bit duration of 20 ms (i.e., 50 bits per second) for the GPS L-1 C/A signals. The coherent integration interval can be extended for improved tracking performance in signal-challenged environment. However, tracking accuracy is decreased by possible data bit sign reversal. The DWO algorithm can be employed to remove the data bit in I and Q correlation values so as to avoid energy loss due to bit transitions when the integration interval of the correlator is extended over 20 ms under the low carrier-to-noise ratio (C/No) environments. The proposed method has an advantage to provide continuous tracking of signals and obtain improved navigation performance. Performance evaluation of the tracking capability as well as positioning accuracy will be presented.en_US
dc.language.isoEnglishen_US
dc.publisherTECH SCIENCE PRESSen_US
dc.relation.ispartofCMC-COMPUTERS MATERIALS & CONTINUAen_US
dc.subjectGlobal positioning system (GPS)en_US
dc.subjectvector tracking loopen_US
dc.subjectpre-filteren_US
dc.subjectdata wipe-offen_US
dc.subjectweak signalen_US
dc.titleContinuous Tracking of GPS Signals with Data Wipe-Off Methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.32604/cmc.2022.023442-
dc.identifier.isiWOS:000729659500020-
dc.relation.journalvolume71en_US
dc.relation.journalissue2en_US
dc.relation.pages3803-3820en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

206
Last Week
0
Last month
2
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback