Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20201
DC 欄位值語言
dc.contributor.authorYen, Chih-Taen_US
dc.contributor.authorLiao, Cheng-Hongen_US
dc.date.accessioned2022-02-10T02:50:47Z-
dc.date.available2022-02-10T02:50:47Z-
dc.date.issued2022-05-5-
dc.identifier.issn1546-2218-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20201-
dc.description.abstractIn this study, single-channel photoplethysmography (PPG) signals were used to estimate the heart rate (HR), diastolic blood pressure (DBP), and systolic blood pressure (SBP). A deep learning model was proposed using a long-term recurrent convolutional network (LRCN) modified from a deep learning algorithm, the convolutional neural network model of the modified inception deep learning module, and a long short-term memory network (LSTM) to improve the model's accuracy of BP and HR measurements. The PPG data of 1,551 patients were obtained from the University of California Irvine Machine Learning Repository. How to design a filter of PPG signals and how to choose the loss functions for deep learning model were also discussed in the study. Finally, the stability of the proposed model was tested using a 10-fold cross-validation, with an MAE +/- SD of 2.942 +/- 5.076 mmHg for SBP, 1.747 +/- 3.042 mmHg for DBP, and 1.137 +/- 2.463 bpm for the HR. Compared with its existing counterparts, the model entailed less computational load and was more accurate in estimating SBP, DBP, and HR. These results established the validity of the model.en_US
dc.language.isoen_USen_US
dc.publisherTECH SCIENCE PRESSen_US
dc.relation.ispartofCMC-COMPUT MATER CONen_US
dc.subjectSIGNALSen_US
dc.subjectFRAMEWORKen_US
dc.titleBlood Pressure and Heart Rate Measurements Using Photoplethysmography with Modified LRCNen_US
dc.typejournal articleen_US
dc.identifier.doi10.32604/cmc.2022.022679-
dc.identifier.isiWOS:000717623300026-
dc.relation.journalvolume71en_US
dc.relation.journalissue1en_US
dc.relation.pages1973-1986en_US
item.languageiso639-1en_US-
item.openairetypejournal article-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextno fulltext-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
顯示於:03 GOOD HEALTH AND WELL-BEING
電機工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

3
上周
1
上個月
1
checked on 2023/3/20

Page view(s)

316
上周
0
上個月
9
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋