Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20286
DC 欄位值語言
dc.contributor.authorChien-Fu Chengen_US
dc.contributor.authorKuo-Tang Tsaien_US
dc.date.accessioned2022-02-11T08:18:42Z-
dc.date.available2022-02-11T08:18:42Z-
dc.date.issued2015-02-01-
dc.identifier.issn1084-8045-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20286-
dc.description.abstractTo solve the consensus problem, the classical consensus protocols require t+1 rounds of message exchange to tolerate t faulty processors, where t=⌊(n−1)/3⌋ and n is the total number of processors in the network. With advancement of software and hardware technologies in recent years, the “actual number of faulty processors” (fact) in a network is usually smaller than t, and fact≪t. However, the classical consensus protocols still need to execute t+1 rounds of message exchange even if there are no faulty processors in the network. To address this issue, we propose a new consensus protocol called Recursive Byzantine-Resilient protocol (RBR protocol). We integrate the concepts of parallel computing, grouping, hierarchy and recursion into this protocol to reduce its time and space complexity. Specifically, the RBR protocol can solve the consensus problem in the presence of 2h(⌊((n/4h)−1)/3⌋+1)−1 Byzantine faulty processors, where h=⌊(lg(n)−2)/2⌋. The time complexity and space complexity of RBR protocol are O(lg(n)) and O(nklg(n)) respectively. The results reveal that RBR protocol outperforms previous protocols in terms of time complexity and in terms of space complexity. In this paper, we also discuss how to enhance the fault-tolerance capability of RBR protocol in achieving consensus through repetitive execution of the protocol when the number of Byzantine faulty processors is greater than 2h(⌊((n/4h)−1)/3⌋+1)−1.en_US
dc.language.isoenen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofJournal of Network and Computer Applicationsen_US
dc.subjectDistributed systemen_US
dc.subjectFault-toleranten_US
dc.subjectConsensus problemen_US
dc.subjectByzantine faulten_US
dc.titleA Recursive Byzantine-Resilient Protocolen_US
dc.typejournal articleen_US
dc.identifier.doi/10.1016/j.jnca.2014.10.010-
dc.identifier.isiWOS:000348337000008-
dc.relation.journalvolume48en_US
dc.relation.pages87-98en_US
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
顯示於:資訊工程學系
顯示文件簡單紀錄

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋