Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20356
DC 欄位值語言
dc.contributor.authorYING-TSANG LOen_US
dc.contributor.authorHAMIDO FUJITAen_US
dc.contributor.authorTUN-WEN PAIen_US
dc.date.accessioned2022-02-17T03:53:03Z-
dc.date.available2022-02-17T03:53:03Z-
dc.date.issued2016-02-
dc.identifier.issn0219-5194-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20356-
dc.description.abstractBackground: Coronary artery disease (CAD) is one of the most representative cardiovascular diseases. Early and accurate prediction of CAD based on physiological measurements can reduce the risk of heart attack through medicine therapy, healthy diet, and regular physical activity. Methods: Four heart disease datasets from the UC Irvine Machine Learning Repository were combined and re-examined to remove incomplete entries, and a total of 822 cases were utilized in this study. Seven machine learning methods, including Naive Bayes, artificial neural networks (ANNs), sequential minimal optimization (SMO), k-nearest neighbor (KNN), AdaBoost, J48, and random forest, were adopted to analyze the collected datasets for CAD prediction. By combining co-expressed observations and an ensemble voting mechanism, we designed and evaluated a new medical decision classifier for CAD prediction. The TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) algorithm was applied to determine the best prediction method for CAD diagnosis. Results: Features of systolic blood pressure, cholesterol, heart rate, and ST depression are considered to be the most significant differences between patients with and without CADs. We show that the prediction capability of seven machine learning classifiers can be enhanced by integrating combinations of observed co-expressed features. Finally, compared to the use of any single classifier, the proposed voting mechanism achieved optimal performance according to TOPSIS.en_US
dc.language.isoen_USen_US
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTDen_US
dc.relation.ispartofJ MECH MED BIOLen_US
dc.subjectCARDIOVASCULAR-DISEASEen_US
dc.subjectTOPSISen_US
dc.titlePrediction Of Coronary Artery Disease Based On Ensemble Learning Approaches And Co-expressed Observationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1142/S0219519416400108-
dc.identifier.isiWOS:000372412200011-
dc.relation.journalvolume16en_US
dc.relation.journalissue1en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
顯示於:03 GOOD HEALTH AND WELL-BEING
資訊工程學系
14 LIFE BELOW WATER
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

9
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

100
上周
0
上個月
2
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋