http://scholars.ntou.edu.tw/handle/123456789/20468| 標題: | Numerical study on evolution of an internal solitary wave across an idealized shelf with different front slopes | 作者: | Hsieh, Chih-Min Cheng, Ming-Hung Hwang, Robert R. Hsu, John R. -C. |
關鍵字: | TRAPEZOIDAL OBSTACLE;CONTINENTAL-SHELF;GENERATION;TOPOGRAPHY;BREAKING;PROPAGATION;SOLITONS;SEA | 公開日期: | 九月-2016 | 出版社: | ELSEVIER SCI LTD | 卷: | 59 | 起(迄)頁: | 236-253 | 來源出版物: | APPL OCEAN RES | 摘要: | Numerical simulations are performed to investigate the influence of variable front slopes on flow evolution and waveform inversion of a depression ISW (internal solitary wave) over an idealized shelf with variable front slopes. A finite volume based on Cartesian grid Method is adopted to solve the Reynolds averaged Navier-Stokes equations using a k-epsilon model for the turbulent closure. Numerical results exhibit the variations of several pertinent properties of the flow field, in the case with or without waveform inversion on the horizontal plateau of an obstacle. The clockwise vortex is stronger than the counterclockwise one, almost throughout the wave-obstacle interaction. Analysis of the turbulent energy budget reveals that the turbulent production term in the governing equations dominates the wave evolution during a wave-obstacle interaction; otherwise the buoyancy production term and the dissipation term due to viscosity within turbulent eddies play a major role in energy dissipation. In addition, the front slope affects mainly the process and reflection of the wave evolution but has less influence than other physical parameters. Moreover, total wave energy of the leading crest is smaller than that of the leading trough even in the cases with waveform inversion on the plateau. (C) 2016 Elsevier Ltd. All rights reserved. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/20468 | ISSN: | 0141-1187 | DOI: | 10.1016/j.apor.2016.06.006 |
| 顯示於: | 03 GOOD HEALTH AND WELL-BEING |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。