Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20488
DC 欄位值語言
dc.contributor.authorLee, Chia-Anen_US
dc.contributor.authorTzeng, Jian-Weien_US
dc.contributor.authorHuang, Nen-Fuen_US
dc.contributor.authorSu, Yu-Shengen_US
dc.date.accessioned2022-02-17T05:04:21Z-
dc.date.available2022-02-17T05:04:21Z-
dc.date.issued2021-07-
dc.identifier.issn1176-3647-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20488-
dc.description.abstractMassive open online courses (MOOCs) provide numerous open-access learning resources and allow for self-directed learning. The application of big data and artificial intelligence (AI) in MOOCs help comprehend raw educational data and enrich the learning process for students and instructors. Thus, we created two deep neural network models. The first model predicts learning outcomes on the basis of learning behaviors observed when students watch videos. The second is a novel exercise-based model that predicts if a student will correctly answer examination questions on relevant concepts. The study data were collected from two courses conducted on the National Tsing Hua University's MOOCs platform. The first model accurately evaluated student performance on the basis of their learning behaviors, and the second model efficiently predicted student performance according to how they answered the exercise questions. In conclusion, our AI system remedies the present-day inability of MOOCs to evaluate student performance. Instructors can use the systems to identify poor-performing students and offer them more assistance on a timely basis.en_US
dc.language.isoen_USen_US
dc.publisherINT FORUM EDUCATIONAL TECHNOLOGY & SOC-IFETSen_US
dc.relation.ispartofEducational Technology & Society (SSCI)en_US
dc.subjectLearning analyticsen_US
dc.subjectEducational big dataen_US
dc.subjectMassive open online coursesen_US
dc.subjectArtificial intelligenceen_US
dc.titlePrediction of Student Performance in Massive Open Online Courses Using Deep Learning System Based on Learning Behaviorsen_US
dc.typejournal articleen_US
dc.identifier.isiWOS:000669522300010-
dc.relation.journalvolume24en_US
dc.relation.journalissue3en_US
dc.relation.pages130-146en_US
dc.identifier.eissn1436-4522-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairetypejournal article-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-1531-3363-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:04 QUALITY EDUCATION
資訊工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

13
上周
0
上個月
0
checked on 2023/6/19

Page view(s)

349
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋