Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. SDGs
  3. 06 CLEAN WATER & SANITATION
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20530
DC FieldValueLanguage
dc.contributor.authorSu, Yu-Senen_US
dc.contributor.authorNi, Chuen-Faen_US
dc.contributor.authorLi, Wei-Cien_US
dc.contributor.authorLee, I-Hsienen_US
dc.contributor.authorLin, Chi-Pingen_US
dc.date.accessioned2022-02-17T05:10:31Z-
dc.date.available2022-02-17T05:10:31Z-
dc.date.issued2020-07-
dc.identifier.issn1568-4946-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20530-
dc.description.abstractDeep learning for enhancing simulation IoTs groundwater flow is a good solution for gaining insights into the behavior of aquifer systems. In previous studies, corresponding results give a basis for the rational management of groundwater resources. The users generally require special skills or knowledge and massive observations in representing the field reality to perform the deep learning algorithms and simulations. To simplify the procedures for performing the numerical and large-scale groundwater flow simulations, we apply the deep learning algorithms which combine both the numerical groundwater model and large-scale IoTs, groundwater flow measuring equipment and various complex groundwater numerical models. The mechanism has the capability to show spatial distributions of in-situ data, analyze the spatial relationships of observed data, generate meshes, update users' databases with in-situ observed data, and create professional reports. According to the numerical simulation results, we revealed that the deep learning algorithms are high computational efficiency, and we can enhance precise variance estimations for large-scale groundwater flow problems. The findings help users to best apply the deep learning algorithms in an easier way, get more accurate simulation results, and manage the groundwater resources rationally. (C) 2020 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofAPPL SOFT COMPUTen_US
dc.subjectMODELSen_US
dc.subjectINTERNETen_US
dc.subjectSYSTEMen_US
dc.subjectTHINGSen_US
dc.titleApplying deep learning algorithms to enhance simulations of large-scale groundwater flow in IoTsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.asoc.2020.106298-
dc.identifier.isiWOS:000537255300005-
dc.relation.journalvolume92en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-1531-3363-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:06 CLEAN WATER & SANITATION
Show simple item record

WEB OF SCIENCETM
Citations

33
Last Week
0
Last month
2
checked on Jun 27, 2023

Page view(s)

256
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback