Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. SDGs
  3. 06 CLEAN WATER & SANITATION
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20530
DC 欄位值語言
dc.contributor.authorSu, Yu-Senen_US
dc.contributor.authorNi, Chuen-Faen_US
dc.contributor.authorLi, Wei-Cien_US
dc.contributor.authorLee, I-Hsienen_US
dc.contributor.authorLin, Chi-Pingen_US
dc.date.accessioned2022-02-17T05:10:31Z-
dc.date.available2022-02-17T05:10:31Z-
dc.date.issued2020-07-
dc.identifier.issn1568-4946-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20530-
dc.description.abstractDeep learning for enhancing simulation IoTs groundwater flow is a good solution for gaining insights into the behavior of aquifer systems. In previous studies, corresponding results give a basis for the rational management of groundwater resources. The users generally require special skills or knowledge and massive observations in representing the field reality to perform the deep learning algorithms and simulations. To simplify the procedures for performing the numerical and large-scale groundwater flow simulations, we apply the deep learning algorithms which combine both the numerical groundwater model and large-scale IoTs, groundwater flow measuring equipment and various complex groundwater numerical models. The mechanism has the capability to show spatial distributions of in-situ data, analyze the spatial relationships of observed data, generate meshes, update users' databases with in-situ observed data, and create professional reports. According to the numerical simulation results, we revealed that the deep learning algorithms are high computational efficiency, and we can enhance precise variance estimations for large-scale groundwater flow problems. The findings help users to best apply the deep learning algorithms in an easier way, get more accurate simulation results, and manage the groundwater resources rationally. (C) 2020 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofAPPL SOFT COMPUTen_US
dc.subjectMODELSen_US
dc.subjectINTERNETen_US
dc.subjectSYSTEMen_US
dc.subjectTHINGSen_US
dc.titleApplying deep learning algorithms to enhance simulations of large-scale groundwater flow in IoTsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.asoc.2020.106298-
dc.identifier.isiWOS:000537255300005-
dc.relation.journalvolume92en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-1531-3363-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:06 CLEAN WATER & SANITATION
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

33
上周
0
上個月
2
checked on 2023/6/27

Page view(s)

256
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋