Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20584
DC FieldValueLanguage
dc.contributor.authorLu, Hoang-Yangen_US
dc.contributor.authorChang, Le-Pingen_US
dc.contributor.authorHung, Hsien-Senen_US
dc.date.accessioned2022-02-17T05:13:03Z-
dc.date.available2022-02-17T05:13:03Z-
dc.date.issued2020-11-
dc.identifier.issn0018-9545-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20584-
dc.description.abstractIn the era of the fifth generation (5G) communication networks, massive multiple-input multiple-output (MIMO) systems demand even lower computation complexity and power consumption while catching up with good detection performance. In this paper, a low-complexity nonlinear detection algorithm is proposed for massive MIMO systems, which is based on partial tree search and successive interference cancellation (SIC). The proposed scheme allows us to expedite the detection process by coping with the transmit symbols group by group. As compared to vertical-Bell laboratories layered space time (V-BLAST), the major breakthrough of computation reduction lies in the fact that the partial tree search can assist the detection process to avoid the inversion of the detection matrix required in each recursion of the SIC process. Both computational complexity analysis and simulation results show that our proposed algorithm not only significantly reduces computational complexity, but also has better bit error rate (BER) performance.en_US
dc.language.isoen_USen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE T VEH TECHNOLen_US
dc.subjectSPECTRAL EFFICIENCYen_US
dc.subjectDETECTION ALGORITHMen_US
dc.subjectUPLINKen_US
dc.titlePartial Tree Search Assisted Symbol Detection for Massive MIMO Systemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TVT.2020.3022916-
dc.identifier.isiWOS:000589638700073-
dc.relation.journalvolume69en_US
dc.relation.journalissue11en_US
dc.relation.pages13319-13327en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:07 AFFORDABLE & CLEAN ENERGY
電機工程學系
Show simple item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

130
Last Week
0
Last month
2
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback