http://scholars.ntou.edu.tw/handle/123456789/20633| 標題: | A framework for mapping the distribution of seabirds by integrating tracking, demography and phenology | 作者: | Carneiro, Ana P. B. Pearmain, Elizabeth J. Oppel, Steffen Clay, Thomas A. Phillips, Richard A. Bonnet-Lebrun, Anne-Sophie Wanless, Ross M. Abraham, Edward Richard, Yvan Rice, Joel Handley, Jonathan Davies, Tammy E. Dilley, Ben J. Ryan, Peter G. Small, Cleo Arata, Javier Arnould, John P. Y. Bell, Elizabeth Bugoni, Leandro Campioni, Letizia Catry, Paulo Cleeland, Jaimie Deppe, Lorna Elliott, Graeme Freeman, Amanda Gonzalez-Solis, Jacob Granadeiro, Jose Pedro Gremillet, David Landers, Todd J. Makhado, Azwianewi Nel, Deon Nicholls, David G. Rexer-Huber, Kalinka Robertson, Christopher J. R. Sagar, Paul M. Scofield, Paul Stahl, Jean-Claude Stanworth, Andrew Stevens, Kim L. Trathan, Philip N. Thompson, David R. Torres, Leigh Walker, Kath Waugh, Susan M. Weimerskirch, Henri Dias, Maria P. |
關鍵字: | GLOBAL PATTERNS;WANDERING ALBATROSSES;MARINE;SEA;CONSERVATION;MANAGEMENT;FISHERY;BYCATCH;LIFE;VARIABILITY | 公開日期: | 三月-2020 | 出版社: | WILEY | 卷: | 57 | 期: | 3 | 起(迄)頁: | 514-525 | 來源出版物: | J APPL ECOL | 摘要: | The identification of geographic areas where the densities of animals are highest across their annual cycles is a crucial step in conservation planning. In marine environments, however, it can be particularly difficult to map the distribution of species, and the methods used are usually biased towards adults, neglecting the distribution of other life-history stages even though they can represent a substantial proportion of the total population. Here we develop a methodological framework for estimating population-level density distributions of seabirds, integrating tracking data across the main life-history stages (adult breeders and non-breeders, juveniles and immatures). We incorporate demographic information (adult and juvenile/immature survival, breeding frequency and success, age at first breeding) and phenological data (average timing of breeding and migration) to weight distribution maps according to the proportion of the population represented by each life-history stage. We demonstrate the utility of this framework by applying it to 22 species of albatrosses and petrels that are of conservation concern due to interactions with fisheries. Because juveniles, immatures and non-breeding adults account for 47%-81% of all individuals of the populations analysed, ignoring the distributions of birds in these stages leads to biased estimates of overlap with threats, and may misdirect management and conservation efforts. Population-level distribution maps using only adult distributions underestimated exposure to longline fishing effort by 18%-42%, compared with overlap scores based on data from all life-history stages. Synthesis and applications. Our framework synthesizes and improves on previous approaches to estimate seabird densities at sea, is applicable for data-poor situations, and provides a standard and repeatable method that can be easily updated as new tracking and demographic data become available. We provide scripts in the R language and a Shiny app to facilitate future applications of our approach. We recommend that where sufficient tracking data are available, this framework be used to assess overlap of seabirds with at-sea threats such as overharvesting, fisheries bycatch, shipping, offshore industry and pollutants. Based on such an analysis, conservation interventions could be directed towards areas where they have the greatest impact on populations. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/20633 | ISSN: | 0021-8901 | DOI: | 10.1111/1365-2664.13568 |
| 顯示於: | 11 SUSTAINABLE CITIES & COMMUNITIES 14 LIFE BELOW WATER |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。