Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. SDGs
  3. 13 CLIMATE ACTION
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20661
DC FieldValueLanguage
dc.contributor.authorAsanjan, Ata Akbarien_US
dc.contributor.authorYang, Tiantianen_US
dc.contributor.authorHsu, Kuolinen_US
dc.contributor.authorSorooshian, Sorooshen_US
dc.contributor.authorLin, Junqiangen_US
dc.contributor.authorPeng, Qidongen_US
dc.date.accessioned2022-02-17T05:21:04Z-
dc.date.available2022-02-17T05:21:04Z-
dc.date.issued2018-12-13-
dc.identifier.issn2169-897X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20661-
dc.description.abstractShort-term Quantitative Precipitation Forecasting is important for flood forecasting, early flood warning, and natural hazard management. This study proposes a precipitation forecast model by extrapolating Cloud-Top Brightness Temperature (CTBT) using advanced Deep Neural Networks, and applying the forecasted CTBT into an effective rainfall retrieval algorithm to obtain the Short-term Quantitative Precipitation Forecasting (0-6 hr). To achieve such tasks, we propose a Long Short-Term Memory (LSTM) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), respectively. The precipitation forecasts obtained from our proposed framework, (i.e., LSTM combined with PERSIANN) are compared with a Recurrent Neural Network (RNN), Persistency method, and Farneback optical flow each combined with PERSIANN algorithm and the numerical model results from the first version of Rapid Refresh (RAPv1.0) over three regions in the United States, including the states of Oregon, Oklahoma, and Florida. Our experiments indicate better statistics, such as correlation coefficient and root-mean-square error, for the CTBT forecasts from the proposed LSTM compared to the RNN, Persistency, and the Farneback method. The precipitation forecasts from the proposed LSTM and PERSIANN framework has demonstrated better statistics compared to the RAPv1.0 numerical forecasts and PERSIANN estimations from RNN, Persistency, and Farneback projections in terms of Probability of Detection, False Alarm Ratio, Critical Success Index, correlation coefficient, and root-mean-square error, especially in predicting the convective rainfalls. The proposed method shows superior capabilities in short-term forecasting over compared methods, and has the potential to be implemented globally as an alternative short-term forecast product.en_US
dc.language.isoen_USen_US
dc.publisherAMER GEOPHYSICAL UNIONen_US
dc.relation.ispartofJ GEOPHYS RES-ATMOSen_US
dc.subjectPREDICTIONen_US
dc.subjectRAINFALLen_US
dc.subjectTIMEen_US
dc.subjectCLIMATEen_US
dc.subjectINFORMATIONen_US
dc.subjectSIMULATIONen_US
dc.subjectFREQUENCYen_US
dc.subjectPRODUCTSen_US
dc.subjectMODELSen_US
dc.subjectRADARen_US
dc.titleShort-Term Precipitation Forecast Based on the PERSIANN System and LSTM Recurrent Neural Networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.1029/2018JD028375-
dc.identifier.isiWOS:000452994100004-
dc.relation.journalvolume123en_US
dc.relation.journalissue22en_US
dc.relation.pages12543-12563en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
Appears in Collections:13 CLIMATE ACTION
Show simple item record

WEB OF SCIENCETM
Citations

83
Last Week
0
Last month
2
checked on Jun 27, 2023

Page view(s)

42
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback