Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. SDGs
  3. 13 CLIMATE ACTION
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20661
DC 欄位值語言
dc.contributor.authorAsanjan, Ata Akbarien_US
dc.contributor.authorYang, Tiantianen_US
dc.contributor.authorHsu, Kuolinen_US
dc.contributor.authorSorooshian, Sorooshen_US
dc.contributor.authorLin, Junqiangen_US
dc.contributor.authorPeng, Qidongen_US
dc.date.accessioned2022-02-17T05:21:04Z-
dc.date.available2022-02-17T05:21:04Z-
dc.date.issued2018-12-13-
dc.identifier.issn2169-897X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20661-
dc.description.abstractShort-term Quantitative Precipitation Forecasting is important for flood forecasting, early flood warning, and natural hazard management. This study proposes a precipitation forecast model by extrapolating Cloud-Top Brightness Temperature (CTBT) using advanced Deep Neural Networks, and applying the forecasted CTBT into an effective rainfall retrieval algorithm to obtain the Short-term Quantitative Precipitation Forecasting (0-6 hr). To achieve such tasks, we propose a Long Short-Term Memory (LSTM) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), respectively. The precipitation forecasts obtained from our proposed framework, (i.e., LSTM combined with PERSIANN) are compared with a Recurrent Neural Network (RNN), Persistency method, and Farneback optical flow each combined with PERSIANN algorithm and the numerical model results from the first version of Rapid Refresh (RAPv1.0) over three regions in the United States, including the states of Oregon, Oklahoma, and Florida. Our experiments indicate better statistics, such as correlation coefficient and root-mean-square error, for the CTBT forecasts from the proposed LSTM compared to the RNN, Persistency, and the Farneback method. The precipitation forecasts from the proposed LSTM and PERSIANN framework has demonstrated better statistics compared to the RAPv1.0 numerical forecasts and PERSIANN estimations from RNN, Persistency, and Farneback projections in terms of Probability of Detection, False Alarm Ratio, Critical Success Index, correlation coefficient, and root-mean-square error, especially in predicting the convective rainfalls. The proposed method shows superior capabilities in short-term forecasting over compared methods, and has the potential to be implemented globally as an alternative short-term forecast product.en_US
dc.language.isoen_USen_US
dc.publisherAMER GEOPHYSICAL UNIONen_US
dc.relation.ispartofJ GEOPHYS RES-ATMOSen_US
dc.subjectPREDICTIONen_US
dc.subjectRAINFALLen_US
dc.subjectTIMEen_US
dc.subjectCLIMATEen_US
dc.subjectINFORMATIONen_US
dc.subjectSIMULATIONen_US
dc.subjectFREQUENCYen_US
dc.subjectPRODUCTSen_US
dc.subjectMODELSen_US
dc.subjectRADARen_US
dc.titleShort-Term Precipitation Forecast Based on the PERSIANN System and LSTM Recurrent Neural Networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.1029/2018JD028375-
dc.identifier.isiWOS:000452994100004-
dc.relation.journalvolume123en_US
dc.relation.journalissue22en_US
dc.relation.pages12543-12563en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
顯示於:13 CLIMATE ACTION
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

83
上周
0
上個月
2
checked on 2023/6/27

Page view(s)

42
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋