Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20828
DC FieldValueLanguage
dc.contributor.authorJen-Yi Changen_US
dc.contributor.authorRu-Yun Chenen_US
dc.contributor.authorChia-Cheng Tsaien_US
dc.date.accessioned2022-03-02T02:14:24Z-
dc.date.available2022-03-02T02:14:24Z-
dc.date.issued2022-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20828-
dc.description.abstractThis article describes the development of the Hermite method of approximate particular solutions (MAPS) to solve time-dependent convection-diffusion-reaction problems. Using the Crank-Nicholson or the Adams-Moulton method, the time-dependent convection-diffusion-reaction problem is converted into time-independent convection-diffusion-reaction problems for consequent time steps. At each time step, the source term of the time-independent convection-diffusion-reaction problem is approximated by the multiquadric (MQ) particular solution of the biharmonic operator. This is inspired by the Hermite radial basis function collocation method (RBFCM) and traditional MAPS. Therefore, the resultant system matrix is symmetric. Comparisons are made for the solutions of the traditional/Hermite MAPS and RBFCM. The results demonstrate that the Hermite MAPS is the most accurate and stable one for the shape parameter. Finally, the proposed method is applied for solving a nonlinear time-dependent convection-diffusion-reaction problem.en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofMathematicsen_US
dc.subjectradial basis function collocation methoden_US
dc.subjecttime-dependent convection-diffusion-reaction problemen_US
dc.subjectmeshless numerical methodsen_US
dc.subjectmethod of approximate particular solutionsen_US
dc.titleHermite Method of Approximate Particular Solutions for Solving Time-Dependent Convection-Diffusion-Reaction Problemsen_US
dc.typejournal issueen_US
dc.identifier.doi10.3390/math10020188-
dc.relation.journalvolume10en_US
dc.relation.journalissue2en_US
dc.relation.pages188en_US
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypejournal issue-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋工程科技學士學位學程(系)
Show simple item record

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
checked on Jun 19, 2023

Page view(s)

137
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback