Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20829
DC FieldValueLanguage
dc.contributor.authorJen-Yi Changen_US
dc.contributor.authorRu-Yun Chenen_US
dc.contributor.authorChia-Cheng Tsaien_US
dc.date.accessioned2022-03-02T02:14:24Z-
dc.date.available2022-03-02T02:14:24Z-
dc.date.issued2022-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20829-
dc.description.abstractIn this study, the polynomial expansion method (PEM) and the polynomialmethod of particular solutions (PMPS) are applied to solve a class of linear ellipticpartial differential equations (PDEs) in two dimensions with constant coefficients. Inthe solution procedure, the sought solution is approximated by the Pascal polynomialsand their particular solutions for the PEM and PMPS, respectively. The multiple-scaletechnique is applied to improve the conditioning of the resulted linear equations andthe accuracy of numerical results for both of the PEM and PMPS. Somemathematicalstatements are provided to demonstrate the equivalence of the PEM and PMPS basesas they are both bases of a certain polynomial vector space. Then, some numericalexperiments were conducted to validate the implementation of the PEM and PMPS.Numerical results demonstrated that the PEM is more accurate and well-conditionedthan the PMPS and the multiple-scale technique is essential in these polynomial methods.en_US
dc.language.isoen_USen_US
dc.publisherGlobal Science Pressen_US
dc.relation.ispartofAdvances in Applied Mathematics and Mechanicsen_US
dc.subjectPascal polynomialen_US
dc.subjectpolynomial expansion methoden_US
dc.subjectpolynomial method of particular solutionsen_US
dc.titleA Comparative Study on Polynomial Expansion Method and Polynomial Method of Particular Solutionsen_US
dc.typejournal issueen_US
dc.identifier.doi10.4208/aamm.OA-2020-0385-
dc.relation.journalvolume14en_US
dc.relation.journalissue3en_US
dc.relation.pages577-595en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal issue-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋工程科技學士學位學程(系)
Show simple item record

Page view(s)

193
Last Week
1
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback