Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20836
DC FieldValueLanguage
dc.contributor.authorJen-Yi Changen_US
dc.contributor.authorRu-Yun Chenen_US
dc.contributor.authorChia-Cheng Tsaien_US
dc.date.accessioned2022-03-02T02:14:25Z-
dc.date.available2022-03-02T02:14:25Z-
dc.date.issued2020-10-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20836-
dc.description.abstractIn this study, a symmetric method of approximate particular solutions (MAPS) is proposed for solving certain partial differential equations (PDEs). Inspired by the unsymmetric MAPS and symmetric radial basis function collocation method (RBFCM), the symmetric MAPS is developed by using the bi-particular solutions of the multiquadrics (MQ). Similar to the unsymmetric MAPS, the right-hand-side of the governing equation is mainly approximated by the MQ in the proposed method. In addition, the system matrix of the prescribed method is symmetric. Numerical examples are solved by the unsymmetric & symmetric RBFCM and MAPS for different problems with different types of governing equations and boundary conditions. Numerical results with different shape parameters are analyzed to show that the symmetric methods are more stable. In addition, the accuracy improvement of the symmetric MAPS is studied. Finally, the stability performance of the symmetric MAPS is further studied for convection-diffusion problems at high Péclet numbers.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectMeshless methoden_US
dc.subjectRadial basis function collocation methoden_US
dc.subjectMethod of approximate particular solutionsen_US
dc.subjectMethod of approximate particular solutionsen_US
dc.titleSymmetric method of approximate particular solutions for solving certain partial differential equationsen_US
dc.typejournal issueen_US
dc.identifier.doi10.1016/j.enganabound.2020.07.009-
dc.relation.journalvolume119en_US
dc.relation.pages105-118en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal issue-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋工程科技學士學位學程(系)
Show simple item record

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

106
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback