Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20836
DC 欄位值語言
dc.contributor.authorJen-Yi Changen_US
dc.contributor.authorRu-Yun Chenen_US
dc.contributor.authorChia-Cheng Tsaien_US
dc.date.accessioned2022-03-02T02:14:25Z-
dc.date.available2022-03-02T02:14:25Z-
dc.date.issued2020-10-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20836-
dc.description.abstractIn this study, a symmetric method of approximate particular solutions (MAPS) is proposed for solving certain partial differential equations (PDEs). Inspired by the unsymmetric MAPS and symmetric radial basis function collocation method (RBFCM), the symmetric MAPS is developed by using the bi-particular solutions of the multiquadrics (MQ). Similar to the unsymmetric MAPS, the right-hand-side of the governing equation is mainly approximated by the MQ in the proposed method. In addition, the system matrix of the prescribed method is symmetric. Numerical examples are solved by the unsymmetric & symmetric RBFCM and MAPS for different problems with different types of governing equations and boundary conditions. Numerical results with different shape parameters are analyzed to show that the symmetric methods are more stable. In addition, the accuracy improvement of the symmetric MAPS is studied. Finally, the stability performance of the symmetric MAPS is further studied for convection-diffusion problems at high Péclet numbers.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectMeshless methoden_US
dc.subjectRadial basis function collocation methoden_US
dc.subjectMethod of approximate particular solutionsen_US
dc.subjectMethod of approximate particular solutionsen_US
dc.titleSymmetric method of approximate particular solutions for solving certain partial differential equationsen_US
dc.typejournal issueen_US
dc.identifier.doi10.1016/j.enganabound.2020.07.009-
dc.relation.journalvolume119en_US
dc.relation.pages105-118en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal issue-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋工程科技學士學位學程(系)
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

4
上周
0
上個月
0
checked on 2023/6/19

Page view(s)

106
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋