Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20842
DC FieldValueLanguage
dc.contributor.authorC. J. Hsuen_US
dc.contributor.authorY. Y. Chenen_US
dc.contributor.authorChia-Cheng Tsaien_US
dc.date.accessioned2022-03-02T02:14:26Z-
dc.date.available2022-03-02T02:14:26Z-
dc.date.issued2019-08-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20842-
dc.description.abstractTo simulate the wave-induced response of coupled pore fluids and a solid skeleton in shallow water, a set of solutions with different formulations (fully dynamic, partly dynamic, and quasi-static) corresponding to each soil behavior assumption is presented. To deal with Jacobian elliptic functions involved in the cnoidal theory, a Fourier series approximation is adopted for expanding the boundary conditions on the seabed surface. The parametric study indicates the significant effect of nonlinearity for shallow water wave, which also enhances the effect of soil characteristics. The investigation of the applicability of reduced formulations reveals the necessity of a partly or even fully dynamic formulation for the wave-induced seabed response problem in shallow water, especially for thickened seabed. The analysis of liquefaction in the seabed indicates that the maximum depth of liquefaction is shallower, and the width of liquefaction is broader under cnoidal wave loading. The present analytical model can provide more reasonable result for the wave-induced seabed response in the range of shallow water wave.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.ispartofApplied Ocean Researchen_US
dc.subjectWave-seabed interactionen_US
dc.subjectCnoidal theoryen_US
dc.subjectFourier series approximationen_US
dc.titleWave-induced seabed response in shallow wateren_US
dc.typejournal issueen_US
dc.identifier.doi10.1016/j.apor.2019.05.016-
dc.relation.journalvolume89en_US
dc.relation.pages211-223en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal issue-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋工程科技學士學位學程(系)
Show simple item record

WEB OF SCIENCETM
Citations

9
Last Week
0
Last month
checked on Jun 19, 2023

Page view(s)

91
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback