Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20843
DC 欄位值語言
dc.contributor.authorJen-Yi Changen_US
dc.contributor.authorChia-Cheng Tsaien_US
dc.contributor.authorD. L. Youngen_US
dc.date.accessioned2022-03-02T02:14:26Z-
dc.date.available2022-03-02T02:14:26Z-
dc.date.issued2019-08-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20843-
dc.description.abstractIn this study, we propose a meshless and boundary-type numerical method, namely the homotopy method of fundamental solutions (HMFS), to solve the steady-state nonlinear heat conduction problems in two dimensions. The HMFS is composed by the homotopy analysis method (HAM) and the method of fundamental solutions (MFS). In the solution procedure, the Kirchhoff transformation is employed to transform the nonlinear governing partial differential equation into the Laplace equation with nonlinear boundary conditions. Sequentially, the HAM is applied to convert the Laplace equation with nonlinear boundary conditions into a sequence of the Laplace equation with linear boundary conditions, which can be solved by the MFS. In order to solve strongly nonlinear problems, a convergence control parameter is introduced to ensure the solution convergence of the prescribed sequence of problems. Several numerical experiments were carried out to validate the proposed method. In addition, a multiple-precision computing is performed to demonstrate the exponential convergence of the HMFS in both the spatial and homotopy coordinates for solving nonlinear heat conduction problems. Finally, bi-material and irregular-domain problems are also considered.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectHomotopy analysis methoden_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectKirchhoff transformationen_US
dc.subjectNonlinear heat conductionen_US
dc.titleHomotopy method of fundamental solutions for solving nonlinear heat conduction problemsen_US
dc.typejournal issueen_US
dc.identifier.doi10.1016/j.enganabound.2019.08.004-
dc.relation.journalvolume108en_US
dc.relation.pages179-191en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal issue-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋工程科技學士學位學程(系)
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

4
上周
0
上個月
checked on 2023/6/19

Page view(s)

163
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋