Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20860
DC 欄位值語言
dc.contributor.authorChia-Cheng Tsaien_US
dc.date.accessioned2022-03-02T02:51:12Z-
dc.date.available2022-03-02T02:51:12Z-
dc.date.issued2012-08-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20860-
dc.description.abstractIn this study, the homotopy analysis method (HAM) is combined with the method of fundamental solutions (MFS) and the augmented polyharmonic spline (APS) to solve certain nonlinear partial differential equations (PDE). The method of fundamental solutions with high-order augmented polyharmonic spline (MFS–APS) is a very accurate meshless numerical method which is capable of solving inhomogeneous PDEs if the fundamental solution and the analytical particular solutions of the APS associated with the considered operator are known. In the solution procedure, the HAM is applied to convert the considered nonlinear PDEs into a hierarchy of linear inhomogeneous PDEs, which can be sequentially solved by the MFS–APS. In order to solve strongly nonlinear problems, two auxiliary parameters are introduced to ensure the convergence of the HAM. Therefore, the homotopy method of fundamental solutions can be applied to solve problems of strongly nonlinear PDEs, including even those whose governing equation and boundary conditions do not contain any linear terms. Therefore, it can greatly enlarge the application areas of the MFS. Several numerical experiments were carried out to validate the proposed method.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectHomotopy analysis methoden_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectAugmented polyharmonic splineen_US
dc.subjectNonlinear partial differential equationen_US
dc.titleHomotopy method of fundamental solutions for solving certain nonlinear partial differential equationsen_US
dc.typejournal issueen_US
dc.identifier.doi10.1016/j.enganabound.2012.02.012-
dc.relation.journalvolume36en_US
dc.relation.journalissue8en_US
dc.relation.pages1226-1234en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal issue-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋工程科技學士學位學程(系)
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

29
上周
0
上個月
0
checked on 2023/6/19

Page view(s)

179
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋