Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20901
DC 欄位值語言
dc.contributor.authorC. W. Chenen_US
dc.contributor.authorD. L. Youngen_US
dc.contributor.authorChia-Cheng Tsaien_US
dc.contributor.authorK. Murugesanen_US
dc.date.accessioned2022-03-02T03:06:22Z-
dc.date.available2022-03-02T03:06:22Z-
dc.date.issued2005-12-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20901-
dc.description.abstractA numerical scheme based on the method of fundamental solutions is proposed for the solution of two-dimensional boundary inverse Stokes problems, which involve over-specified or under-specified boundary conditions. The coefficients of the fundamental solutions for the inverse problems are determined by properly selecting the number of collocation points using all the known boundary values of the field variables. The boundary points of the inverse problems are collocated using the Stokeslet as the source points. Validation results obtained for two test cases of inverse Stokes flow in a circular cavity, without involving any iterative procedure, indicate the proposed method is able to predict results close to the analytical solutions. The effects of the number and the radius of the source points on the accuracy of numerical predictions have also been investigated. The capability of the method is demonstrated by solving different types of inverse problems obtained by assuming mixed combinations of field variables on varying number of under- and over-specified boundary segments.en_US
dc.language.isoen_USen_US
dc.relation.ispartofComputational Mechanicsen_US
dc.subjectMethod of fundamental solutionsen_US
dc.subjectStokesleten_US
dc.subjectInverse problemen_US
dc.subjectCircular cavityen_US
dc.subjectMeshless numerical methoden_US
dc.titleThe method of fundamental solutions for inverse 2D Stokes problemsen_US
dc.typejournal issueen_US
dc.identifier.doi10.1007/s00466-005-0692-3-
dc.relation.journalvolume37en_US
dc.relation.journalissue1en_US
dc.relation.pages2-14en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal issue-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋工程科技學士學位學程(系)
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

61
上周
0
上個月
0
checked on 2023/6/19

Page view(s)

100
上周
0
上個月
2
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋