Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/21231
Title: Dynamic Modeling of Sediment Budget in Shihmen Reservoir Watershed in Taiwan
Authors: Yi-Chin Che
Ying-Hsin Wu
Che-Wei Shen
Yu-Jia Chiu 
Keywords: reservoir watershed;sediment budget;typhoon;landslide;debris flow;soil water index;sediment routing;numerical modeling
Issue Date: Dec-2018
Journal Volume: 10
Journal Issue: 12
Source: Water
Abstract: 
Qualifying sediment dynamic in a reservoir watershed is essential for water resource management. This study proposed an integrated model of Grid-based Sediment Production and Transport Model (GSPTM) at watershed scale to evaluate the dynamic of sediment production and transport in the Shihmen Reservoir watershed in Taiwan. The GSPTM integrates several models, revealing landslide susceptibility and processes of rainfall–runoff, sediment production from landslide and soil erosion, debris flow and mass movement, and sediment transport. For modeling rainfall–runoff process, the tanks model gives surface runoff volume and soil water index as a hydrological parameter for a logistic regression-based landslide susceptibility model. Then, applying landslide model with a scaling relation of volume and area predicts landslide occurrence. The Universal Soil Loss Equation is then used for calculating soil erosion volume. Finally, incorporating runoff-routing algorithm and the Hunt’s model achieves the dynamical modeling of sediment transport. The landslide module was calibrated using a well-documented inventory during 10 heavy rainfall or typhoon events since 2004. A simulation of Typhoon Morakot event was performed to evaluate model’s performance. The results show the simulation agrees with the tendency of runoff and sediment discharge evolution with an acceptable overestimation of peak runoff, and predicts more precise sediment discharge than rating methods do. In addition, with clear distribution of sediment mass trapped in the mountainous area, the GSPTM also showed a sediment delivery ratio of 30% to quantify how much mass produced by landslide and soil erosion is still trapped in mountainous area. The GSPTM is verified to be useful and capable of modeling the dynamic of sediment production and transport at watershed level, and can provide useful information for sustainable development of Shihmen Reservoir watershed. View Full-Text
URI: http://scholars.ntou.edu.tw/handle/123456789/21231
ISSN: 2073-4441
DOI: 10.3390/w10121808
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

144
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback