Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/21232
DC FieldValueLanguage
dc.contributor.authorYu-Jia Chiuen_US
dc.contributor.authorHong-Yuan Leeen_US
dc.contributor.authorTse-Lin Wangen_US
dc.contributor.authorJunyang Yuen_US
dc.contributor.authorYing-Tien Linen_US
dc.contributor.authorYeping Yuanen_US
dc.date.accessioned2022-03-23T01:22:33Z-
dc.date.available2022-03-23T01:22:33Z-
dc.date.issued2019-02-
dc.identifier.issn2073-4441-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/21232-
dc.description.abstractAccurate and reliable estimates of sediment yields from a watershed and identification of unstable stream reaches due to sediment-related disaster are crucial for watershed management, disaster prevention, and hazard mitigation purposes. In this study, we added hydrodynamic and sediment transport modules in a recently developed model to estimate sediment yields and identify the unstable stream reaches in a large-scale watershed (> 100km2). The calibrated and verified models can well reproduce the flow discharge and sediment discharge at the study site, the Shihmen Reservoir Watershed in Taiwan, during several typhoon events. For the scenario applications, the results revealed that the contribution (> 96%) of landslides on sediment supply is much more significant than compared to soil erosion (< 4%). The sediment contribution from the upstream of the hydrological station-Yufeng is approximately 36–55% of the total sediment supply for the rainfall events of 25, 50, 100, and 200 years return period. It also indicates that 22–52% of sediment still remain at foot of the slope and the streams, which become a potential source for sediment hazards in the future. Combining with the bed erosion and deposition depths, flow-induced shear stress from the SRH-2D model, and probability of slope failure within 250 m of stream reaches, the relatively stability of stream reaches can be identified. The results could provide the water resource authorities for reference to take precautionary measures in advance on the stream reaches with high-degree instability. View Full-Texten_US
dc.language.isoenen_US
dc.relation.ispartofWateren_US
dc.subjectsediment yielden_US
dc.subjectlandslideen_US
dc.subjectstream stabilityen_US
dc.subjectShihmen Reservoir watersheden_US
dc.titleModeling Sediment Yields and Stream Stability Due to Sediment-Related Disaster in Shihmen Reservoir Watershed in Taiwanen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/w11020332-
dc.identifier.isiWOS:000460899600151-
dc.relation.journalvolume11en_US
dc.relation.journalissue2en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptData Analysis and Administrative Support-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

147
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback