Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/21366
DC 欄位值語言
dc.contributor.authorJwo, Dah-Jingen_US
dc.contributor.authorChang, Wei-Yehen_US
dc.date.accessioned2022-04-11T00:32:06Z-
dc.date.available2022-04-11T00:32:06Z-
dc.date.issued2022-01-01-
dc.identifier.issn1546-2218-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/21366-
dc.description.abstractThis paper investigates the navigational performance of Global Positioning System (GPS) using the variational Bayesian (VB) based robust filter with interacting multiple model (IMM) adaptation as the navigation processor. The performance of the state estimation for GPS navigation processing using the family of Kalman filter (KF) may be degraded due to the fact that in practical situations the statistics of measurement noise might change. In the proposed algorithm, the adaptivity is achieved by estimating the time varying noise covariance matrices based on VB learning using the probabilistic approach, where in each update step, both the system state and time-varying measurement noise were recognized as random variables to be estimated. The estimation is iterated recursively at each time to approximate the real joint posterior distribution of state using the VB learning. One of the two major classical adaptive Kalman filter (AKF) approaches that have been proposed for tuning the noise covariance matrices is the multiple model adaptive estimate (MMAE). The IMM algorithm uses two or more filters to process in parallel, where each filter corresponds to a different dynamic or measurement model. The robust Huber's M-estimation-based extended Kalman filter (HEKF) algorithm integrates both merits of the Huber M-estimation methodology and EKF. The robustness is enhanced by modifying the filter update based on Huber's M-estimation method in the filtering framework. The proposed algorithm, referred to as the interactive multi-model based variational Bayesian HEKF (IMM-VBHEKF), provides an effective way for effectively handling the errors with time-varying and outlying property of non-Gaussian interference errors, such as the multipath effect. Illustrative examples are given to demonstrate the navigation performance enhancement in terms of adaptivity and robustness at the expense of acceptable additional execution time.en_US
dc.language.isoEnglishen_US
dc.publisherTECH SCIENCE PRESSen_US
dc.relation.ispartofCMC-COMPUTERS MATERIALS & CONTINUAen_US
dc.subjectGPSen_US
dc.subjectvariational bayesianen_US
dc.subjectHuber's M-estimationen_US
dc.subjectinteracting multiple modelen_US
dc.subjectadaptiveen_US
dc.subjectoutlieren_US
dc.subjectmultipathen_US
dc.titleVariational Bayesian Based IMM Robust GPS Navigation Filteren_US
dc.typejournal articleen_US
dc.identifier.doi10.32604/cmc.2022.025040-
dc.identifier.isiWOS:000763489500009-
dc.relation.journalvolume72en_US
dc.relation.journalissue1en_US
dc.relation.pages755-773en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:通訊與導航工程學系
顯示文件簡單紀錄

Page view(s)

190
上周
0
上個月
4
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋