Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/21508
標題: Asymptotic Numerical Solutions for Second-order Quasilinear Singularly Perturbed Problems
作者: Liu, Chein-Shan 
Chang, Chih-Wen
關鍵字: Quasilinear singularly perturbed problem;Asymptotic numerical method;Initial value problem method;Modified asymptotic solution
公開日期: 1-一月-2021
出版社: NATL TAIWAN OCEAN UNIV
卷: 29
期: 6
起(迄)頁: 743-756
來源出版物: JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN
摘要: 
For a second-order quasilinear singularly perturbed problem under the Dirichlet boundary conditions, we propose a new asymptotic numerical method, which involves two problems: a reduced problem with a one-side boundary condition and a novel boundary layer correction problem with a two-sided boundary condition. Through the introduction of two new variables, both problems are transformed to a set of three first-order initial value problems with zero initial conditions. The Runge-Kutta method is then applied to integrate the differential equations and to determine two unknown terminal values of the new variables until they converge. The modified asymptotic numerical solution satisfies the Dirichlet boundary conditions. Some examples confirm that the newly proposed method can achieve a better asymptotic solution to the quasilinear singularly perturbed problem. For most values of the perturbing parameter, the present method not only preserves the inherent asymptotic property within the boundary layer but also improves the accuracy within the entire domain.
URI: http://scholars.ntou.edu.tw/handle/123456789/21508
ISSN: 1023-2796
DOI: 10.51400/2709-6998.2554
顯示於:海洋中心

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

1
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

126
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋