Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/21552
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2022-05-05T01:11:19Z-
dc.date.available2022-05-05T01:11:19Z-
dc.date.issued2022-04-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/21552-
dc.description.abstractIn the numerical integration of the second-order nonlinear boundary value problem (BVP), the right boundary condition plays the role as a target equation, which is solved either by the half-interval method (HIM) or a new derivative-free Newton method (DFNM) to be presented in the paper. With the help of a boundary shape function, we can transform the BVP to an initial value problem (IVP) for a new variable. The terminal value of the new variable is expressed as a function of the missing initial value of the original variable, which is determined through a few integrations of the IVP to match the target equation. In the new boundary shape function method (NBSFM), we solve the target equation to obtain a highly accurate missing initial value, and then compute a precise solution. The DFNM can find more accurate left boundary values, whose performance is superior than HIM. Apparently, DFNM converges faster than HIM. Then, we modify the Lie-group shooting method and combine it to the BSFM for solving the nonlinear BVP with Robin boundary conditions. Numerical examples are examined, which assure that the proposed methods together with DFNM can successfully solve the nonlinear BVPs with high accuracy.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSYMMETRY-BASELen_US
dc.subjectnonlinear boundary value problemsen_US
dc.subjectLie-group shooting methoden_US
dc.subjectnew boundary shape function methoden_US
dc.subjectderivative-free Newton methoden_US
dc.subjecttarget equationen_US
dc.titleLie-Group Shooting/Boundary Shape Function Methods for Solving Nonlinear Boundary Value Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/sym14040778-
dc.identifier.isiWOS:000785227600001-
dc.relation.journalvolume14en_US
dc.relation.journalissue4en_US
dc.identifier.eissn2073-8994-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

103
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋