Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. SDGs
  3. 14 LIFE BELOW WATER
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/21560
標題: Machine-learning assisted antibiotic detection and categorization using a bacterial sensor array
作者: Huang, Wei-Che
Wei, Chin-Dian
Belkin, Shimshon
Hsieh, Tung-Han
Cheng, Ji-Yen
關鍵字: QUANTIFICATION;RESIDUES
公開日期: 15-三月-2022
出版社: ELSEVIER SCIENCE SA
卷: 355
來源出版物: SENSOR ACTUAT B-CHEM
摘要: 
With the extensive global use of antibiotics, the problems associated with environmental and food antibiotic residues have significantly increased, necessitating new methods for rapid detection and categorization of compounds with antibiotic activity. In an answer to this need, we report a new platform, bacterial array solid-phase assay (BacSPA), based on monitoring the responses of 15 stress-responsive Escherichia coli sensor strains. These bioreporters, genetically modified by fusing bioluminescence (luxCDABE) reporter genes upstream of stress-induced gene promoters, were inoculated on solidified agar slabs individually mixed with 11 different antibiotics, belonging to 7 mode of action classes. The antibiotic-induced bioluminescence by the different strains generated a distinct response pattern for each antibiotic class. This luminescence pattern was monitored by timelapse photography, and a machine learning algorithm, Multiclass Decision Forest, was applied to train categorization models that either identified the compound or categorized its class. The best model displayed a 65% accuracy for compound identification and 90% for class classification, within three hours of exposing the sensor array to the tested compound. The method also effectively categorized antibiotics at different concentrations: the trained model categorized eight antibiotics at concentrations ranging from 125 ppb to 1000 ppb, with accuracies mostly higher than 70%. The method was further successfully applied for categorizing antibiotics not included in the training. With a more extensive future database, encompassing a broader range of existing antibiotics, this method may be turned into a powerful tool for detecting and categorizing both known and new antibiotic residues in food or environmental samples.
URI: http://scholars.ntou.edu.tw/handle/123456789/21560
ISSN: 0925-4005
DOI: 10.1016/j.snb.2021.131257
顯示於:14 LIFE BELOW WATER

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
checked on 2023/6/22

Page view(s)

204
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋