Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/21828
DC 欄位值語言
dc.contributor.authorHuang, Pin-Chunen_US
dc.date.accessioned2022-06-02T05:14:27Z-
dc.date.available2022-06-02T05:14:27Z-
dc.date.issued2022-04-
dc.identifier.issn0022-1694-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/21828-
dc.description.abstractThe extent of coastal flooding is influenced by many factors such as the topography of the low-lying land, tidal level, rainfall pattern, inflow discharge collected from the upstream drainage area, etc. This study establishes a new methodology of effectively predicting the flooding process in coastal areas, and which is achieved by combining the recurrent neural network (RNN) model with the detailed analysis of different hydrological and geomorphological factors. The novelty of this study is to apply the topographic wetness index (TWI) of each grid to classify all inputs into multiple classes for separative training to improve the overall accuracy of flooding simulations. A numerical inundation model based on hydrodynamic equations was applied to investigate the behavior of coastal flooding in the temporal and spatial domain under a variety of model settings with different hydrologic conditions and it was utilized to generate the target inundation depths for the training of the RNN model. The relevance between the downstream topography, tidal level, rainfall intensity, and the spatial distribution of flooding in coastal areas is explored via the use of machine learning (ML) techniques. The focus of this study is to evaluate the proposed alternative method that allows for improving the efficiency and stability of forecasting coastal floods caused by rains and storm surges due to the approaching tropical cyclones. The method developed in this study is promising to replace the numerical inundation model to reinforce the model's stability and computational efficiency.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofJ HYDROLen_US
dc.subjectSEA-LEVEL RISEen_US
dc.subjectCLIMATE-CHANGEen_US
dc.subjectFLOWen_US
dc.subjectWATERen_US
dc.titleAn effective alternative for predicting coastal floodplain inundation by considering rainfall, storm surge, and downstream topographic characteristicsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.jhydrol.2022.127544-
dc.identifier.isiWOS:000790474900002-
dc.relation.journalvolume607en_US
dc.identifier.eissn1879-2707-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptEcology and Environment Construction-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
13 CLIMATE ACTION
14 LIFE BELOW WATER
15 LIFE ON LAND
顯示文件簡單紀錄

Page view(s)

301
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋