Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22008
DC 欄位值語言
dc.contributor.authorSuryarasmi, Aninditaen_US
dc.contributor.authorChang, Chin-Chunen_US
dc.contributor.authorAkhmalia, Raniaen_US
dc.contributor.authorMarshallia, Maysaen_US
dc.contributor.authorWang, Wei-Jenen_US
dc.contributor.authorLiang, Deronen_US
dc.date.accessioned2022-07-01T01:53:04Z-
dc.date.available2022-07-01T01:53:04Z-
dc.date.issued2022-07-01-
dc.identifier.issn0141-9382-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22008-
dc.description.abstractDeep learning technologies based on Convolution Neural Networks (CNN) have been widely used in fabric defect detection. On-site CNN model training and defect detection offer several desirable properties for the fabric manufactures, such as better data security and less connectivity requirements, when compared with the on-cloud training approach. However, computers installed at the manufacturing site are usually industrial computers with limited computing power, which are not able to run many effective CNN models. A lightweight CNN model should be used in this scenario, in order to find a balance point among defect detection, efficiency, memory consumption and model training time. This paper presents a lightweight CNN-based architecture for fabric defect detection. Compared with VGG16, MobileNetV2, EfficientNet, and DenseNet as state-of-the-art architectures, the proposed architecture, namely FN-Net, can perform training 3 to 33 times as fast as these architectures with less graphics processing unit and memory consumption. With adaptive class determination, FN-Net has an average F1 score 0.86, while VGG16 and EfficientNet as the best and the worst among the baseline models have 0.81 and 0.50, respectively.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofDISPLAYSen_US
dc.subjectArtificial intelligenceen_US
dc.subjectLightweight convolutional neural networken_US
dc.subjectFabric manufacturingen_US
dc.subjectAOIen_US
dc.subjectDefect detectionen_US
dc.titleFN-Net: A lightweight CNN-based architecture for fabric defect detection with adaptive threshold-based class determinationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.displa.2022.102241-
dc.identifier.isiWOS:000807821600002-
dc.relation.journalvolume73en_US
dc.identifier.eissn1872-7387-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

138
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋