Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22010
DC FieldValueLanguage
dc.contributor.authorLee, Ying-Teen_US
dc.contributor.authorKao, Jeng-Hongen_US
dc.contributor.authorChou, Yen-Tingen_US
dc.contributor.authorChen, Jeng-Tzongen_US
dc.date.accessioned2022-07-01T01:53:04Z-
dc.date.available2022-07-01T01:53:04Z-
dc.date.issued2022-07-01-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22010-
dc.description.abstractA systematic approach based on the null-field integral formula is used to determine the electric potential of a tissue with many cells stimulated by remote electric fields. When the cells are very close to each other, the problem becomes nearly singular and the accuracy of the solution deteriorates. However, in the proposed approach, the highly accurate results are obtained because the separable kernel (degenerate kernel) and eigenfunction expansion are introduced to capture the geometry property in the integral formulation. Only boundary nodes are required instead of boundary elements to satisfy the boundary conditions or interface conditions. The proposed approach could be seen as one kind of meshless and semi-analytical methods. In addition, the error just stems from the number of truncation terms of the eigenfuntion expansion and the convergence rate of exponential order is better than the linear order of the conventional boundary element method. For the problem of closely packed cells, the boundary density of sharp variation could be accurately simulated or captured by increasing the number of terms of eigenfunctions. Finally, the acceptable results are shown to see the efficiency and accuracy of the proposed approach by the given numerical examples including one, three and twenty cells.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIER SCI LTDen_US
dc.relation.ispartofENGINEERING ANALYSIS WITH BOUNDARY ELEMENTSen_US
dc.subjectLaplace equationen_US
dc.subjectElliptical inhomogeneityen_US
dc.subjectIn-plane electric fielden_US
dc.subjectNull-field integral equationen_US
dc.subjectDegenerate kernelen_US
dc.subjectEigenfucntion expansionen_US
dc.titleA systematic approach for potentials on closely packed cells using the null-field boundary integral equation in conjunction with the degenerate kernel and eigenfunction expansionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2022.03.023-
dc.identifier.isiWOS:000797832200001-
dc.relation.journalvolume140en_US
dc.relation.pages98-112en_US
dc.identifier.eissn1873-197X-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

343
Last Week
0
Last month
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback