Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22018
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2022-07-01T01:53:06Z-
dc.date.available2022-07-01T01:53:06Z-
dc.date.issued2022-10-01-
dc.identifier.issn0888-3270-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22018-
dc.description.abstractTo save the manipulation cost for seeking a higher order approximation to enhance the accuracy of analytic solution, the present paper develops a novel perturbation method by linearizing the nonlinear ordinary differential equation (ODE) with respect to a zeroth order solution in advance, where a weight factor splits the nonlinear terms into two sides of the ODE. Consequently, a series of linear ODEs are solved sequentially to obtain higher order approximate analytic solutions, and meanwhile the frequency can be determined explicitly by solving a frequency equation. When the nonlinear problems are linearized to the Mathieu equations endowing with periodic forcing terms, we develop a novel homotopy perturbation method to determine their solutions, and then provide accurate formulas for nonlinear oscillators. For Duffing oscillator as an example, the accuracy of frequency obtained by the linearized homotopy perturbation method can be raised to 10(-8), and even for a huge value of nonlinear coefficient, the error is of the order 10(-5). A numerical procedu r e is developed to implement the proposed method, where the computed order of convergence reveals a linear convergence that the accuracy of nth order approximate solution is better than 10(-(n+1)). The super-and sub-harmonic periodic solutions are exhibited for the forced Duffing equation.en_US
dc.language.isoEnglishen_US
dc.publisherACADEMIC PRESS LTD- ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofMECHANICAL SYSTEMS AND SIGNAL PROCESSINGen_US
dc.subjectNonlinear oscillatorsen_US
dc.subjectApproximate analytic solutionen_US
dc.subjectLinearized homotopy perturbation methoden_US
dc.subjectMathieu equationen_US
dc.subjectFrequency equationen_US
dc.titleA novel perturbation method to approximate the solution of nonlinear ordinary differential equation after being linearized to the Mathieu equationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.ymssp.2022.109261-
dc.identifier.isiWOS:000805842700001-
dc.relation.journalvolume178en_US
dc.identifier.eissn1096-1216-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypejournal article-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

1
上周
0
上個月
checked on 2023/6/22

Page view(s)

186
上周
1
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋