Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22081
DC 欄位值語言
dc.contributor.authorHuang, Pin-Chunen_US
dc.date.accessioned2022-08-17T02:42:49Z-
dc.date.available2022-08-17T02:42:49Z-
dc.date.issued2022-10-01-
dc.identifier.issn0341-8162-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22081-
dc.description.abstractThe objective of this study is to explore the relevance between the rainfall pattern, slope stability of the soil layer, and the occurrence of shallow landslides. A seepage flow model for subsurface flow simulation with a slope stability analysis approach was established to examine the temporal and spatial variation of unstable grids. To define the threshold conditions to trigger shallow landslides for different regions in the watershed, the spatial distribution of the safety factor at the initial state was derived and adopted as the reference basis to classify all grids of the watershed into multiple zones. The first novelty of this study is to apply such a partition, depending on the watershed topography and soil characteristics, to train the landslide prediction model separately. The second novelty is to execute a dynamic recurrent neural network (RNN) model to determine the possible duration and the start time of shallow landslides for each zone by considering the rainfall condition as well as the cumulative area of unstable grids, which can be obtained by performing the seepage flow model. In this way, the physical significance of the RNN prediction model can be reinforced. The analysis results showed that the proposed methodology could effectively track the respective period of occurring shallow landslides for each zone, additionally, only some specific zones in the watershed were necessary to be investigated because they were prone to cause a large number of grids to become unstable during rainstorms.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofCATENAen_US
dc.subjectShallow landslideen_US
dc.subjectSubsurface flow modelen_US
dc.subjectSlope stability analysisen_US
dc.subjectRainfall intensityen_US
dc.titleAn innovative partition method for predicting shallow landslides by combining the slope stability analysis with a dynamic neural network modelen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.catena.2022.106480-
dc.identifier.isiWOS:000823043100003-
dc.relation.journalvolume217en_US
dc.identifier.eissn1872-6887-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptEcology and Environment Construction-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

Page view(s)

331
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋