Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22081
DC FieldValueLanguage
dc.contributor.authorHuang, Pin-Chunen_US
dc.date.accessioned2022-08-17T02:42:49Z-
dc.date.available2022-08-17T02:42:49Z-
dc.date.issued2022-10-01-
dc.identifier.issn0341-8162-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22081-
dc.description.abstractThe objective of this study is to explore the relevance between the rainfall pattern, slope stability of the soil layer, and the occurrence of shallow landslides. A seepage flow model for subsurface flow simulation with a slope stability analysis approach was established to examine the temporal and spatial variation of unstable grids. To define the threshold conditions to trigger shallow landslides for different regions in the watershed, the spatial distribution of the safety factor at the initial state was derived and adopted as the reference basis to classify all grids of the watershed into multiple zones. The first novelty of this study is to apply such a partition, depending on the watershed topography and soil characteristics, to train the landslide prediction model separately. The second novelty is to execute a dynamic recurrent neural network (RNN) model to determine the possible duration and the start time of shallow landslides for each zone by considering the rainfall condition as well as the cumulative area of unstable grids, which can be obtained by performing the seepage flow model. In this way, the physical significance of the RNN prediction model can be reinforced. The analysis results showed that the proposed methodology could effectively track the respective period of occurring shallow landslides for each zone, additionally, only some specific zones in the watershed were necessary to be investigated because they were prone to cause a large number of grids to become unstable during rainstorms.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofCATENAen_US
dc.subjectShallow landslideen_US
dc.subjectSubsurface flow modelen_US
dc.subjectSlope stability analysisen_US
dc.subjectRainfall intensityen_US
dc.titleAn innovative partition method for predicting shallow landslides by combining the slope stability analysis with a dynamic neural network modelen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.catena.2022.106480-
dc.identifier.isiWOS:000823043100003-
dc.relation.journalvolume217en_US
dc.identifier.eissn1872-6887-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptEcology and Environment Construction-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

331
Last Week
0
Last month
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback