Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22089
DC FieldValueLanguage
dc.contributor.authorWang, Jung-Huaen_US
dc.contributor.authorHuang, Ren-Jieen_US
dc.contributor.authorWang, Ting-Yuanen_US
dc.date.accessioned2022-08-17T02:42:51Z-
dc.date.available2022-08-17T02:42:51Z-
dc.date.issued2022-07-19-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22089-
dc.description.abstractThis paper presents a novel bio-inspired edge-oriented approach to perceptual contour extraction. Our method does not rely on segmentation and can unsupervised learn to identify edge points that are readily grouped, without invoking any connecting mechanism, into object boundaries as perceived by human. This goal is achieved by using a dynamic mask to statistically assess the inter-edge relations and probe the principal direction that acts as an edge-grouping cue. The novelty of this work is that the mask, centered at a target pixel and driven by EM algorithm, can iteratively deform and rotate until it covers pixels that best fit the Bayesian likelihood of the binary class w.r.t a target pixel. By creating an effect of enlarging receptive field, contiguous edges of the same object can be identified while suppressing noise and textures, the resulting contour is in good agreement with gestalt laws of continuity, similarity and proximity. All theoretical derivations and parameters updates are conducted under the framework of EM-based Bayesian inference. Issues of stability and parameter uncertainty are addressed. Both qualitative and quantitative comparison with existing approaches proves the superiority of the proposed method in terms of tracking curved contours, noises/texture resilience, and detection of low-contrast contours.en_US
dc.language.isoEnglishen_US
dc.publisherNATURE PORTFOLIOen_US
dc.relation.ispartofSCIENTIFIC REPORTSen_US
dc.titleBio-inspired contour extraction via EM-driven deformable and rotatable directivity-probing masken_US
dc.typejournal articleen_US
dc.identifier.doi10.1038/s41598-022-16040-6-
dc.identifier.isiWOS:000827810800060-
dc.relation.journalvolume12en_US
dc.relation.journalissue1en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

Page view(s)

156
Last Week
0
Last month
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback