Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22151
DC 欄位值語言
dc.contributor.authorUbina, Naomi A.en_US
dc.contributor.authorCheng, Shyi-Chyien_US
dc.contributor.authorChang, Chin-Chunen_US
dc.contributor.authorCai, Sin-Yien_US
dc.contributor.authorLan, Hsun-Yuen_US
dc.contributor.authorLu, Hoang-Yangen_US
dc.date.accessioned2022-09-20T02:25:36Z-
dc.date.available2022-09-20T02:25:36Z-
dc.date.issued2025-04-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22151-
dc.description.abstractPrecise fish metric estimation is essential in providing intelligent aquaculture farm decisions. Stereo vision has been widely used for size estimation. Still, many factors affect fish metrics accuracy using a low-cost underwater stereo camera, such as distance, ambient lighting, water velocity, and turbidity. Although such a system is affordable and energy-efficient, they are less accurate in estimating depths than its active counterparts. Since power source is always a problem in offshore aquaculture sites, energy-efficient devices are important. To deal with the accuracy problems of the camera, we propose an effective deep-learning-based object matching to optimize the fish metric estimation. In terms of the challenges of the underwater environment, an analysis of the accuracy of the fish 3D position calculation in the aquaculture cage based on the captured stereo camera images is performed. The analysis assumes a known geometrical configuration of the rectified camera system. The critical factor limiting the 3D fish metric estimation accuracy is the resolution of the computed depth maps of fish. An object-based matching is proposed for underwater fish tracking and depth computing to address this issue using reliable convolutional neural networks (CNNs). For each stereo video frame, an object classification and instance segmentation CNN separates the fish objects from their background. The fish objects are then cropped and matched using sub-pixel disparity computation of the video interpolation CNN. The calculated fish disparities and depth values are used for fish metric estimations. We also tracked each fish and computed the metrics across frames. The median metrics are calculated as the final result to reduce the noises introduced by the different gestures of the fish. Furthermore, underwater stereo video datasets with the actual metrics of sampled fish measured by humans are also constructed to verify the effectiveness of our approach. Our proposed method has less than a 5% error rate for fish length estimation.en_US
dc.language.isoen_USen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE ACCESSen_US
dc.subjectNETWORKen_US
dc.subjectVISIONen_US
dc.subjectSIZEen_US
dc.titleIntelligent Underwater Stereo Camera Design for Fish Metric Estimation Using Reliable Object Matchingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/ACCESS.2022.3185753-
dc.identifier.isiWOS:000838497300001-
dc.relation.journalvolume10en_US
dc.relation.pages74605-74619en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
電機工程學系
14 LIFE BELOW WATER
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

2
checked on 2023/6/22

Page view(s)

222
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋