Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22156
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.contributor.authorChen, Yung-Weien_US
dc.contributor.authorChang, Yen-Shenen_US
dc.date.accessioned2022-09-20T02:25:38Z-
dc.date.available2022-09-20T02:25:38Z-
dc.date.issued2022-07-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22156-
dc.description.abstractIn the paper, we determine the period of an n-dimensional nonlinear dynamical system by using a derived formula in an (n + 1)-dimensional augmented space. To form a periodic motion, the periodic conditions in the state space and nonlinear first-order differential equations constitute a special periodic problem within a time interval with an unknown length. Two periodic problems are considered: (a) boundary values are given and (b) boundary values are unknown. By using the shape functions, a boundary shape function method (BSFM) is devised to obtain an initial value problem with the initial values of the new variables given. The unknown terminal values of the new variables and period are determined by two iterative algorithms for the case (a) and one iterative algorithm for the case (b). The periodic solutions obtained from the BSFM satisfy the periodic conditions automatically. For the numerical example, the computed order of convergence displays the merit of the BSFM. For the sake of comparison, the iterative algorithms based on the shooting method for cases (a) and (b) were developed by directly implementing the Poincare map into the fictitious time-integration method to determine the period. The BSFM is better than the shooting method in terms of convergence speed, accuracy, and stability.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSYMMETRY-BASELen_US
dc.subjectnonlinear dynamical systemen_US
dc.subjectperiodic problemen_US
dc.subjectperiodic orbitsen_US
dc.subjectboundary shape function methoden_US
dc.subjectiterative algorithmen_US
dc.titlePeriodic Orbits of Nonlinear Ordinary Differential Equations Computed by a Boundary Shape Function Methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/sym14071313-
dc.identifier.isiWOS:000831934400001-
dc.relation.journalvolume14en_US
dc.relation.journalissue7en_US
dc.identifier.eissn2073-8994-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
顯示於:海洋中心
輪機工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

385
上周
1
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋