Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22164
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorEl-Zahar, Essam R.en_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2022-09-20T02:25:39Z-
dc.date.available2022-09-20T02:25:39Z-
dc.date.issued2022-08-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22164-
dc.description.abstractFor the purpose of solving a second-order singularly perturbed problem (SPP) with variable coefficients, a mth-order asymptotic-numerical method was developed, which decomposes the solutions into two independent sub-problems: a reduced first-order linear problem with a left-end boundary condition; and a linear second-order problem with the boundary conditions given at two ends. These are coupled through a left-end boundary condition. Traditionally, the asymptotic solution within the boundary layer is carried out in the stretched coordinates by either analytic or numerical method. The present paper executes the mth-order asymptotic series solution in terms of the original coordinates. After introducing 2(m + 1) new variables, the outer and inner problems are transformed together to a set of 3(m + 1) first-order initial value problems with the given zero initial conditions; then, the Runge-Kutta method is applied to integrate the differential equations to determine the 2(m + 1) unknown terminal values of the new variables until they are convergent. The asymptotic-numerical solution exactly satisfies the boundary conditions, which are different from the conventional asymptotic solution. Several examples demonstrated that the newly proposed method can achieve a better asymptotic solution. For all values of the perturbing parameter, the method not only preserves the inherent asymptotic property within the boundary layer but also improves the accuracy of the solution in the entire domain. We derive the sufficient conditions, which terminate the series of asymptotic solutions for inner and outer problems of the SPP without having the spring term. For a specific case, we can derive a closed-form asymptotic solution, which is also the exact solution of the considered SPP.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectlinear singularly perturbed problemen_US
dc.subjecthigher-order asymptotic-numerical methoden_US
dc.subjectinitial value problem methoden_US
dc.subjectiterative methoden_US
dc.subjectmodified asymptotic solutionen_US
dc.titleHigher-Order Asymptotic Numerical Solutions for Singularly Perturbed Problems with Variable Coefficientsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math10152791-
dc.identifier.isiWOS:000839881300001-
dc.relation.journalvolume10en_US
dc.relation.journalissue15en_US
dc.identifier.eissn2227-7390-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypejournal article-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

1
上周
1
上個月
0
checked on 2023/6/27

Page view(s)

133
上周
2
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋