Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22166
DC FieldValueLanguage
dc.contributor.authorTsai, Yu-Shiuanen_US
dc.contributor.authorModales, Alvin, Ven_US
dc.contributor.authorLin, Hung-Taen_US
dc.date.accessioned2022-09-20T02:25:40Z-
dc.date.available2022-09-20T02:25:40Z-
dc.date.issued2022-08-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22166-
dc.description.abstractDistance and depth detection plays a crucial role in intelligent robotics. It enables drones to understand their working environment to avoid collisions and accidents immediately and is very important in various AI applications. Image-based distance detection usually relies on the correctness of geometric information. However, the geometric features will be lost when the object is rotated or the camera lens image is distorted. This study proposes a training model based on a convolutional neural network, which uses a single-lens camera to estimate humans' distance in continuous images. We can partially restore depth information loss using built-in camera parameters that do not require additional correction. The normalized skeleton feature unit vector has the same characteristics as time series data and can be classified very well using a 1D convolutional neural network. According to our results, the accuracy for the occluded leg image is over 90% at 2 to 3 m, 80% to 90% at 4 m, and 70% at 5 to 6 m.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSENSORSen_US
dc.subjectrotationen_US
dc.subjectdeep learningen_US
dc.subjecthuman skeletonsen_US
dc.subjectOpenPoseen_US
dc.subjectoccluded human imagesen_US
dc.subjectUAV applicationen_US
dc.titleA Convolutional Neural-Network-Based Training Model to Estimate Actual Distance of Persons in Continuous Imagesen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/s22155743-
dc.identifier.isiWOS:000839940100001-
dc.relation.journalvolume22en_US
dc.relation.journalissue15en_US
dc.identifier.eissn1424-8220-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-8264-9601-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

139
Last Week
0
Last month
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback