Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22200
標題: Construction of dynamic Green's function for an infinite acoustic field with multiple prolate spheroids
作者: Leem, W. M.
Chen, J. T. 
公開日期: 1-九月-2022
出版社: SPRINGER WIEN
來源出版物: ACTA MECHANICA
摘要: 
The acoustic pressure of an unbounded acoustic field with multiple prolate spheroids with the Robin boundary conditions subjected to a time-harmonic point source located at an arbitrary location is solved semi-analytically in this work. This resultant solution is the so-called dynamic Green's function, which is important for acoustic problems such as sound scattering and noise control. It can be obtained by combining the fundamental solution with a homogenous solution, which is determined by using the collocation multipole procedure to satisfy the required Robin boundary conditions. To consider the geometries as described herein, the regular solution is expanded with angular and radial prolate spheroidal wave functions. As an alternate to the complex addition theorem applied to problems in multiply connected domains, by the directional derivative, the multipole expansion is computed in a straightforward manner among different local prolate spheroidal coordinate systems. By taking the finite terms of the multipole expansion at all collocating points, an algebraic system is acquired, and then the unknown coefficients are determined to complete the proposed dynamic Green's function by the Robin boundary conditions. The present results of one spheroid agree with the available analytical solutions. For the case of more than one spheroid, the proposed results are verified by comparison with the numerical method such as the boundary element method (BEM). It indicates that the present solution is more accurate than that of the BEM and shows a fast convergence. In the end, the parameter study is performed to explore the influences of the exciting frequency of the point source, the surface admittance, the number and the separation of spheroids, and the aspect ratio of spheroid on the dynamic Green's functions. The proposed results can be applied to solve the time-harmonic problems for an unbounded acoustic field containing multiple spheroids. In the form of numerical Green's functions, they can improve the computational efficiency and increase the application of the boundary integral equation method.
URI: http://scholars.ntou.edu.tw/handle/123456789/22200
ISSN: 0001-5970
DOI: 10.1007/s00707-022-03301-8
顯示於:河海工程學系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

2
上周
0
上個月
1
checked on 2023/6/27

Page view(s)

112
上周
2
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋