Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22374
DC FieldValueLanguage
dc.contributor.authorZhang, Juanen_US
dc.contributor.authorShuy, Rong-Juinen_US
dc.contributor.authorChu, Chiung-Linen_US
dc.contributor.authorFan, Chia-Mingen_US
dc.date.accessioned2022-10-04T06:12:35Z-
dc.date.available2022-10-04T06:12:35Z-
dc.date.issued2020-06-01-
dc.identifier.issn0378-4754-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22374-
dc.description.abstractIn this paper, a meshless numerical procedure, based on the generalized finite difference method (GFDM) is proposed to efficiently and accurately solve the three-dimensional eigenproblems of the Helmholtz equation. The eigenvalues and eigenvectors are very important to various engineering applications in three-dimensional acoustics, optics and electromagnetics, so it is essential to develop an efficient numerical model to analyze the three-dimensional eigenproblems in irregular domains. In the GFDM, the Taylor series and the moving-least squares method are used to derive the expressions at every node. By enforcing the satisfactions of governing equation at interior nodes and boundary conditions at boundary nodes, the resultant system of linear algebraic equations can be expressed as the eigenproblems of matrix and then the eigenvalues and eigenvectors can be efficiently acquired. In this paper, four numerical examples are provided to validate the accuracy and simplicity of the proposed numerical scheme. Furthermore, the numerical results are compared with analytical solutions and other numerical results to verify the merits of the proposed method.(c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofMATHEMATICS AND COMPUTERS IN SIMULATIONen_US
dc.subjectHelmholtz equationen_US
dc.subjectEigenvalueen_US
dc.subjectEigenvectoren_US
dc.subjectGeneralized finite difference methoden_US
dc.subjectMeshless methoden_US
dc.titleGeneralized finite difference method for three-dimensional eigenproblems of Helmholtz equationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.matcom.2022.01.007-
dc.identifier.isiWOS:000782991500001-
dc.relation.journalvolume196en_US
dc.relation.pages45-67en_US
dc.identifier.eissn1872-7166-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6858-1540-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

119
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback