Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22381
DC FieldValueLanguage
dc.contributor.authorKu, Cheng-Yuen_US
dc.contributor.authorXiao, Jing-Enen_US
dc.date.accessioned2022-10-04T06:12:36Z-
dc.date.available2022-10-04T06:12:36Z-
dc.date.issued2020-09-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22381-
dc.description.abstractIn this article, a collocation method using radial polynomials (RPs) based on the multiquadric (MQ) radial basis function (RBF) for solving partial differential equations (PDEs) is proposed. The new global RPs include only even order radial terms formulated from the binomial series using the Taylor series expansion of the MQ RBF. Similar to the MQ RBF, the RPs is infinitely smooth and differentiable. The proposed RPs may be regarded as the equivalent expression of the MQ RBF in series form in which no any extra shape parameter is required. Accordingly, the challenging task for finding the optimal shape parameter in the Kansa method is avoided. Several numerical implementations, including problems in two and three dimensions, are conducted to demonstrate the accuracy and robustness of the proposed method. The results depict that the method may find solutions with high accuracy, while the radial polynomial terms is greater than 6. Finally, our method may obtain more accurate results than the Kansa method.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSYMMETRY-BASELen_US
dc.subjectmultiquadricen_US
dc.subjectradial basis functionen_US
dc.subjectradial polynomialsen_US
dc.subjectthe shape parameteren_US
dc.subjectmeshlessen_US
dc.subjectKansa methoden_US
dc.titleA Collocation Method Using Radial Polynomials for Solving Partial Differential Equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/sym12091419-
dc.identifier.isiWOS:000587590200001-
dc.relation.journalvolume12en_US
dc.relation.journalissue9en_US
dc.identifier.eissn2073-8994-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDoctorate Degree Program in Ocean Engineering and Technology-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptInstitute of Earth Sciences-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptOcean Energy and Engineering Technology-
crisitem.author.orcid0000-0001-8533-0946-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback