Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22742
DC FieldValueLanguage
dc.contributor.authorShih-Meng Hsuen_US
dc.contributor.authorChien-Chung Keen_US
dc.contributor.authorMing-Chia Dongen_US
dc.contributor.authorYen-Tsu Linen_US
dc.date.accessioned2022-10-25T00:50:49Z-
dc.date.available2022-10-25T00:50:49Z-
dc.date.issued2022-10-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22742-
dc.description.abstractDiscovering groundwater resources in a fault-controlled aquifer system appears to be a viable solution to water scarcity in the mountainous areas of Taiwan. Regoliths, fractured bedrock, and faults commonly exist in such aquifer systems. To investigate the groundwater behavior in the three subsurface media, a 3-D hybrid model (equivalent porous media/discrete fracture network) involving various in situ investigation techniques (borehole drilling, outcrop investigation, borehole televiewer logging, sonic logging, and downhole hydraulic tests) was proposed to assess the hydraulic properties and groundwater storage of the Dili fault zone of Central Taiwan and its surrounding formations. Subsequently, the model was verified through a case study of a simple fracture network. Based on the validated model, flow path analysis was successfully performed to reveal the hydrogeological role of the fault zone, which acts as a conduit for groundwater flow. To ensure the simulated result regarding the hydraulic properties of the fault zone, this study proposes three additional cross-checking techniques, namely stable water isotopes, derivative plots of pumping test data, and identification of hydraulic gradients. The results of the investigation show that the hydraulic properties of the fault zone obtained by the three approaches are consistent with those determined by the numerical method, and the use of the three cross-checking techniques has been confirmed to be suitable for effectively exploring the hydraulic properties of a fault because the site characterization data are insufficient. Finally, the developed hybrid model was used to calculate the groundwater storage of each geological zone, indicating its great potential for the development of groundwater resources in the study area. Therefore, this study integrates in situ investigation techniques, numerical models, and three evaluation approaches of fault zone hydrogeology to construct a systematic, feasible, and applicable exploration methodology that can be employed for groundwater resource exploration in a fault-dominated aquifer system.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEngineering Geologyen_US
dc.subjectFault-dominated aquifer, Hybrid model, Stable water isotopes, Derivative plot, Hydraulic gradienten_US
dc.titleInvestigating fault zone hydraulic properties and groundwater potential in a fault-dominated aquifer system: A case study of the Dili fault in Central Taiwanen_US
dc.typejournal articleen_US
dc.identifier.doihttps://doi.org/10.1016/j.enggeo.2022.106805-
dc.relation.journalissue308en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-5283-6393-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

248
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback