Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2303
Title: High-temperature solid-state reaction induced structure modifications and associated photoactivity and gas-sensing performance of binary oxide one-dimensional composite system
Authors: Liang, Yuan-Chang 
Lo, Ya-Ju
Keywords: PHYSICAL SYNTHESIS METHODOLOGY;PHOTOCATALYTIC ACTIVITY;DETECTION ABILITY;REDUCING GAS;ZNO;NANORODS;HETEROSTRUCTURE;NANOCOMPOSITES;NANOPARTICLES;NANOFIBERS
Issue Date: Jan-2017
Publisher: ROYAL SOC CHEMISTRY
Journal Volume: 7
Journal Issue: 47
Start page/Pages: 29428-29439
Source: RSC ADV
Abstract: 
The effects of high-temperature solid-state reactions on the microstructures, optical properties, photoactivity, and low-concentration NO2 gas-sensing sensitivity of ZnO-SnO2 core-shell nanorods were investigated. In this study, the ZnO-SnO2 core-shell nanorods were synthesized through a combination of the hydrothermal method and vacuum sputtering. According to X-ray diffraction and transmission electron microscopy analyses, high-temperature solid-state reactions between the SnO2 shell and ZnO core materials at 900 degrees C engendered an ultrathin SnO2 shell layer for transforming into the ternary Zn2SnO4 (ZTO) phase. Moreover, surface roughening was involved in the high-temperature solid-state reactions, as determined from electron microscopy images. Comparatively, the ZnO-ZTO nanorods have a higher oxygen vacancy density near the nanostructure surfaces than do the ZnO-SnO2 nanorods. The photodegradation of rhodamine B dyes under simulated solar light irradiation in presence of the ZnO-SnO2 and ZnO-ZTO nanorods revealed that the ZnO-ZTO nanorods have a higher photocatalytic activity than do the ZnO-SnO2 nanorods. Furthermore, the ZnO-ZTO nanorods exhibited higher gassensing sensitivity than did the ZnO-SnO2 nanorods on exposure to low-concentration NO2 gases. The substantial differences in the microstructure and optical properties between the ZnO-SnO2 and ZnO-ZTO nanorods accounted for the photocatalytic activity and NO2 gas-sensing results obtained in this study.
URI: http://scholars.ntou.edu.tw/handle/123456789/2303
ISSN: 2046-2069
DOI: 10.1039/c7ra04916a
Appears in Collections:光電與材料科技學系
07 AFFORDABLE & CLEAN ENERGY

Show full item record

WEB OF SCIENCETM
Citations

29
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

174
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback