Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23031
DC FieldValueLanguage
dc.contributor.authorJim Z. C. Laien_US
dc.contributor.authorEric Y.T. Juanen_US
dc.contributor.authorFranklin J. C. Laien_US
dc.date.accessioned2022-11-09T07:35:31Z-
dc.date.available2022-11-09T07:35:31Z-
dc.date.issued2013-09-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23031-
dc.description.abstractIn this paper, we present a rough k-means clustering algorithm based on minimizing the dissimilarity, which is defined in terms of the squared Euclidean distances between data points and their closest cluster centers. This approach is referred to as generalized rough fuzzy k-means (GRFKM) algorithm. The proposed method solves the divergence problem of available approaches, where the cluster centers may not be converged to their final positions, and reduces the number of user-defined parameters. The presented method is shown to be converged experimentally. Compared to available rough k-means clustering algorithms, the proposed method provides less computing time. Unlike available approaches, the convergence of the proposed method is independent of the used threshold value. Moreover, it yields better clustering results than RFKM for the handwritten digits data set, landsat satellite data set and synthetic data set, in terms of validity indices. Compared to MRKM and RFKM, GRFKM can reduce the value of Xie–Beni index using the handwritten digits data set, where a lower Xie–Beni index value implies the better clustering quality. The proposed method can be applied to handle real life situations needing reasoning with uncertainty.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPattern Recognitionen_US
dc.titleRough clustering using generalized fuzzy clustering algorithmen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.patcog.2013.02.003-
dc.relation.journalvolume46en_US
dc.relation.journalissue9en_US
dc.relation.pages2538-2547en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0003-2199-5986-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

WEB OF SCIENCETM
Citations

25
Last Week
0
Last month
checked on Jun 19, 2023

Page view(s)

127
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback