Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23045
DC FieldValueLanguage
dc.contributor.authorYuan-Jyh Lanen_US
dc.date.accessioned2022-11-10T01:11:12Z-
dc.date.available2022-11-10T01:11:12Z-
dc.date.issued2000-11-06-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23045-
dc.descriptiondoctoral dissertation (博士學位論文)en_US
dc.description.abstractIn this paper, an analytical model is developed for the problem of periodic waves interaction with poro-elastic structures. Water waves are described using the linear wave theory. The poro-elastic structures are assumed to be homogeneous, isotropic, and can be elastic. The fluid motion and the structure response are also assumed to be periodic. Based on the momentum equation of Biot’s theory and the storage equation presented by Verruijt, the governing equations for the pore pressure and displacements of the poro-elastic medium are derived. Both kinematic and dynamic boundary conditions are used to solve the problem. The first study is the interactive problem of waves propagating over poro-elastic seabed. Continuity of dynamic pressure and flow flux at the interfacial seabed surface are considered. General solutions for the cases of infinite and finite thickness seabed are derived, respectively. The present analytic model is compared with experimental results and other analytic solutions to verify the correctness. Using present analytic solution, variations of the wavelength, wave damping and fluid pressure caused by coupling of waves and the poro-elastic seabed are discussed. It is shown that higher flexibility of the poro-elastic seabed induces larger interface pressure, but higher permeability causes smaller pressure on the seabed interface. Furthermore, the elasticity and porosity in affecting the interface pressure become apparent for larger seabed thickness. It is also shown that the wave length is affected by the poro-elastic seabed and becomes shorter for softer seabed and shallower water depth. For almost natural seabed, higher permeability induces larger wave damping. However, shear modulus of poro-elastic bed has little effect on wave damping. Next, the problem of waves interaction with a poro-elastic submerged structure is considered. The poro-elastic medium theory is redeveloped by means of that the momentum equation of Biot’s theory is modified for adopting the turbulent fricative effect presented by Sollitt and Cross (1972). Nonhomogeneous boundary conditions are included in the boundary value problem of waves interaction with a poro-elastic submerged structure. In the solution procedure, employing an analytic concept similar to Lee and Liu (1995), general solutions for the waves motion and the poro-elastic submerged structure are derived. Using the present analytic solution, effects of elasticity and permeability of poro-elastic submerged structures on wave reflection and transmission are studied. Results show that higher flexibility of the poro-elasitc submerged structure can induce resonant phenomena, but higher permeability causes larger damping and reduces the resonance. In last study, a series of experiments are conducted in a wave flume to survey the deformation of monochromatic waves as they propagate over poro-elastic submerged structures. Measurements of wave reflection and transmission induced by soft and permeable submerged structures are carried out. The material properties of experimental models are determined by means of physical model tests. Experimental results indicate some variations of wave reflection and transformation caused by poro-elastic submerged structures. It is shown that wave transmission for poro-elastic case is smaller than the one for rigid and impermeable case. The oscillatory motion of poro-elastic submerged structures can produce extra reflective waves and result larger reflection ratio. Furthermore, agreement between theory and experiment is achieved.en_US
dc.language.isoen_USen_US
dc.relation.ispartofNational Cheng Kung University, Taiwanen_US
dc.subject波浪en_US
dc.subject透水彈性結構en_US
dc.subject互制作用en_US
dc.subjectwavesen_US
dc.subjectporo-elastic structuresen_US
dc.subjectinteractionen_US
dc.titleAnalysis of Waves Interaction with Poro-elastic Structuresen_US
dc.title.alternative波浪與可透水彈性體互相作用之分析en_US
dc.typethesisen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypethesis-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptCenter of Excellence for the Oceans-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

153
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback